Articles Information
Chemistry Journal, Vol.1, No.4, Aug. 2015, Pub. Date: Jul. 10, 2015
A New Application of Nano-Graphene Oxide (NGO) as a Heterogeneous Catalyst in Oxidation of Alcohols Types
Pages: 151-158 Views: 10060 Downloads: 3064
Authors
[01]
Ali Gharib, Department of Chemistry, Islamic Azad University, Mashhad, Iran; Department of Chemistry, Agricultural Researches and Services Center, Mashhad, Iran.
[02]
Leila Vojdani Fard, Education Ministry, Education Organization of Razavi Khorasan, Mashhad, Iran.
[03]
Nader Noroozi Pesyan, Department of Chemistry, Faculty of Science, Urmia University, Urmia, Iran.
[04]
Mina Roshani, Department of Chemistry, Islamic Azad University, Mashhad, Iran.
Abstract
We describe an efficient method for oxidation of alcohols to related aldehydes and ketones by hydrogen peroxide as oxidizing agent, under reflux conditions. Nano-graphene oxide (NGO) as a heterogeneous catalyst was used and had their activity compared with other various catalysts. This catalyst was found to be an excellent catalyst for oxidation of alcohols. The effects of various parameters, including catalyst type, nature of the substituent in the alcohols and temperature, on the yield of the carboxylic acids were studied. Nano-graphene oxide was synthesized by the oxidation of graphite powders. The structural nature of the nano-graphene oxide was characterized by a variety of techniques including XRD, TEM, FT-IR and UV/Vis. The functional groups on its basal planes and edges of nano-grahene oxide play important role in catalytic activity. This nanocatalyst was found to be highly efficient in this reaction and products were obtained in good to excellent yields. The recovered nano-catalyst was successfully reused for several runs without significant loss in its catalytic activity. The structure, morphology and properties were characterized using X-ray diffraction (XRD) and Transmission Electron Microscope (TEM).
Keywords
Nano-Graphene Oxide, Oxidation, Aldehyde, Ketone, Catalyst
References
[01]
Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruof, R. S. Chem. Soc. Rev. 2010, 39, 228.
[02]
Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Nano lett. 2008, 8, 3137.
[03]
Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Nano Lett. 2007, 7, 3499.
[04]
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature. 2006, 442, 282.
[05]
Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascon, J. M. D. Langmuir. 2008, 24, 10560.
[06]
Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. ACS Nano. 2008, 2, 463.
[07]
Li, Z.; Zhang, W.; Luo, Y.; Yang, J.; Hou, J. G. J. Am. Chem. Soc. 2009, 131, 6320.
[08]
Zhang, L.; Liang, J.; Huang, Y.; Ma, Y.; Wang, Y.; Chen, Y. Carbon. 2009, 47, 3365.
[09]
Luo, H. Q.; Huang, W. T.; Shi, Y.; Xie, W. Y.; Chem. Commun. 2011, 47, 7800.
[10]
Lin, Y. H.; Shao, Y. Y.; Wang, J.; Wu, H.; Liu, J.I. a review, Electroanal. 2010, 22, 1027.
[11]
xiao, X.; Liu, P.; Wang, J. S.; Verbrugge, M. W.; Balogh, M. P. Electrochem.Commun. 2010, 13, 209.
[12]
Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z.; Nano Lett. 2010, 10, 4863.
[13]
Zhou, M.; Wang, Y. L.; Zhai, Y. M.; Zhai, J. F.; Ren, W.; Wang, F. A.; Dong, S. J. Chem. Eur. J. 2009, 15, 6116.
[14]
Li, B.; Zhang, X. T.; Li, X. H.; Wang, L.; Han, R. Y.; Liu, B. B.; Zheng, W. T.; Li, X. L. Chem. Commun. 2010, 46, 3499.
[15]
Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. ACS Nano. 2010, 4, 4317.
[16]
Zhang, L.; Li, Y.; Zhang, L.; L. Da-Wei.; Karpuzov, D.; Long, Y. T. Int. J. Electrochem. Sci. 2011, 6, 819.
[17]
Wan, L.; Song, Y.; Zhu, H.; Wang Y, Wang, L. Int. J. Electrochem. Sci. 2011, 6, 4700.
[18]
Geim A. K.; Novoselov, K. S. Nat Mater. 2007, 6, 183.
[19]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y. Science. 2004, 306, 666.
[20]
Avouris, P.; Dimitrakopoulos, C. Mater Today. 2012, 15, 86.
[21]
Chung, C.; Kim, Y. K.; Shin, D.; Ryoo, S. R.; Hong, B. H. Acc Chem Res. 2013, 46, 2211.
[22]
Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Ad Mater. 2010, 22, 3906.
[23]
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A. Carbon. 2007, 45, 1558.
[24]
Danilov, M. O.; Slobodyanyuk, I. A.; Rusetskii, I. A.; Kolbasov, G. Y. J. Nanostruc. Chem. 2013, 3, 49.
[25]
Huang, C.; Li, C.; Shi, G. Energy Environ Sci. 2012, 5, 8848.
[26]
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem Rev. 2014, 114, 6179.
[27]
Xiang, Q. J.; Yu, J. G.; Jaroniec, M. Chem Soc Rev. 2012, 41, 782.
[28]
Baker, R. T.; Tumas, W. Science. 1999, 284, 1427.
[29]
Anastas, P. T.; Bartlett, L. M.; Kirchhoff, M. M.; Williamson, T. C. Catal. Today. 2000, 55, 11.
[30]
Sheldon, R. A.; Kochi, J. K.; Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, 1981; Procter, G. In Comprehensive Organic Synthesis; Ley, S. V., ed.; Pergamon: Oxford, 1991, vol. 7, p 305.
[31]
Ley, S. V.; Madin, A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Ley, S. V.; eds.; Pergamon: Oxford, 1991, vol. 7, p 251.
[32]
Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Nature. 2007, 448, 457.
[33]
Gomez-Navarro, C.; Burghard, M.; Kern, K. Nano Lett. 2008, 8, 2045.
[34]
Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. ACS Nano. 2009, 3, 2653.
[35]
Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.
[36]
Compton, O. C.; Nguyen, S. T. Small. 2010, 6, 711.
[37]
Varghese, N.; Mogera, U.; Govindaraj, A.; Das, A.; Maiti, P. K.; Sood, A. K.; Rao, C. N. R. Chem. Phys. Chem. 2009, 10, 206.
[38]
Tang, L. H.; Wang, Y.; Liu, Y.; Li. J. H. Acs Nano. 2011, 5, 3817.
[39]
Lv, W.; Guo, M.; Liang, M. H.; Jin, F. M.; Cui, L.; Zhi, L. J.; Yang, Q. H. J. Mater. Chem. 2010, 20, 6668.
[40]
Ferri, T.; Frasca, D.; de Fuentes, O. A.; Santucci, R.; Frasconi, M. Angew. Chem. Int. Ed. 2011, 50, 7074.
[41]
Su, Q.; Pang, S. P.; Alijani, V.; Li, C.; Feng, X. L.; Mullen, K. Adv. Mater. 2009, 21, 3191.
[42]
Compton, O. C.; Dikin, D. A.; Putz, K. W.; Brinson, L. C.; Nguyen, S. T. Adv. Mater. 2010, 22, 892.
[43]
Boukhvalov, D. W.; Katsnelson, M. I. Nano Lett. 2008, 8, 4373.
[44]
Mungse, H. P.; Verma, S.; Kumar, N.; Sain, B.; Khatri, O. P. J. Mater. Chem. 2012, 5427.
[45]
Dreyer, D. R.; Jia, H. P.; Todd, A. D.; Geng, J.; Bielawski, C. W. Org. Biomol. Chem. 2011, 9, 7292.
[46]
Jia, H. P.; Dreyer, D. R.; Bielawski, C. W. Tetrahedron. 2011, 67, 4431.
[47]
Dreyer, D. R.; Jia, H. P.; Bielawski, C. W. Angew. Chem. Int. Ed. 2010, 49, 6813.
[48]
Dhakshinamoorthy, A.; Alvaro, M. S.; Concepcion, P.; Fornes, V.; Garcia, H. Chem. Commun. 2012, 48, 5443.
[49]
Verma, S.; Mungse, H. P.; Kumar, N.; Choudhary, S.; Jain, S. L.; Sain, B.; Khatri, O. P. Chem. Commun. 2011, 47, 12673.
[50]
Kumar, V.; Rama Rao, K. Tetrahedron Lett. 2011, 52, 5188.
[51]
Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1985, 80, 1339.
[52]
Stankovich, S.; Piner, R.D.; Chen, X.; Wu, N.; Nguyen S.T.; Ruoff, R.S. J. Mater. Chem. 2006, 16, 155-158.
[53]
Pei, S.; Cheng, H. M. Carbon. 2012, 50, 3210.
[54]
Wojtoniszak, M.; Chen, X.; Kalenczuk, R. J.; Wajda, A.; Lapczuk, J.; Kurzewski, M.; Drozdzik, M.; Chu, P. K.; Borowiak-Palen, E. Colloids and Surfaces B: Biointerfaces. 2012, 89, 79.
[55]
Gharib, A.; Noorozi Pesyan, N.; Jahangir, M.; Roshani, M.; Scheeren, J. W. Bulgarian Chem. Communm. 2013, 45, 314.
[56]
Das, B.; Thirupathi, P.; Mahender, I.; Reddy. K. R.; J. Mole. Catal. A: Chem. 2006, 247, 182.
[57]
Yi, W-. B.; Cai., C. J. Fluor. Chem. 2005, 126, 1553.
[58]
Riadi, Y.; Mamouni, R.; Azzalou, R.; Boulahjar, R.; Abrouki, Y.; Haddad, M. E.; Routier, S.; Guillaumet, G.; Lazar S. Tetrahedron Lett. 2010, 51, 6715.
[59]
Rawal, K.; Mishra, M. K.; Dixit, M.; Srinivasarao, M, J. Indust. Engin. Chem. 2012, 18, 1474.
[60]
Kosynkin, D.; Higginbotham, A.; Sinitskii, A.; Lomeda, J.; Dimiev, A.; Price, B. Nature. 2009, 458, 872.
[61]
Hummers, W.; Offeman, R. J. Am. Chem. Soc. 1958, 80, 1339.