Articles Information
Chemistry Journal, Vol.1, No.6, Dec. 2015, Pub. Date: Dec. 11, 2015
Batch Equilibrium, Kinetic and Thermodynamic Studies on Adsorption of Methylene Blue in Aqueous Solution onto Activated Carbon Prepared from Bos Indicus Gudali Bones
Pages: 172-181 Views: 3501 Downloads: 1332
Authors
[01]
Richard Domga, Department of Applied Chemistry, ENSAI, University of Ngaoundere, Ngaoundere, Cameroon;Department of Chemistry, Faculty of Science University of Ngaoundere, Ngaoundere, Cameroon.
[02]
Massai Harouna, Department of Chemistry, Faculty of Science, University of Maroua, Maroua, Cameroon.
[03]
Constant Tcheka, Department of Inorganic Chemistry, Faculty of Science, University of Yaounde, Yaounde, Cameroon.
[04]
Jean Bosco Tchatchueng, Department of Applied Chemistry, ENSAI, University of Ngaoundere, Ngaoundere, Cameroon.
[05]
Arbam Tsafam, Department of Chemistry, Faculty of Science University of Ngaoundere, Ngaoundere, Cameroon.
[06]
Domga , Department of Applied Chemistry, ENSAI, University of Ngaoundere, Ngaoundere, Cameroon.
[07]
Nathalie Kobbe Dama, Department of Applied Chemistry, ENSAI, University of Ngaoundere, Ngaoundere, Cameroon.
[08]
Dangwang Dikdim, Department of Applied Chemistry, ENSAI, University of Ngaoundere, Ngaoundere, Cameroon;Department of Chemistry, Faculty of Science University of Ngaoundere, Ngaoundere, Cameroon.
Abstract
This paper report the efficiency of carbonaceous adsorbent prepared from Bos Gudali Inducus bones in removing of methylene blue (MB) in aqueous solution. The experimental parameters such as pH of solution, contact time, adsorbent dose, initial concentration of MB and temperature were studied. The adsorbent showed good potential for adsorption at pH 3.0 with a maximum take up of 98.58%. Adsorption equilibrium was reached after 10min. FT-IR spectra indicated high surface functional groups present in the carbons. Experimental data were analysed by two adsorption isotherms models (Langmuir and Freundlich). Applicability of isotherm equation to describe the adsorption process was analysed by the correlation coefficients values, R2. Langmuir model shows best fit with R2 values of 0.999, as compared to the Freundlich model. Kinetic model of pseudo-second-order best describes the adsorption kinetics on the experimental data. The mechanism of adsorption of methylene blue is therefore based on the assumption of the kinetic model of pseudo-second order in two steps. Thermodynamic parameters such as ΔH°, ΔG° and ΔS° proved that adsorption mechanism of MB onto activated carbon prepared from Gudali bones is possible, physisorption, spontaneous and exothermic in the ranges of temperature of 298-333K. The results of this study show that the animal activated carbon from bones of zebu cattle Gudali can be used as an adsorbent for removal of methylene blue residue in aqueous solution.
Keywords
Activated Carbon, Adsorption Isotherms, Kinetics, Methylene Blue, Thermodynamic
References
[01]
Garg, V. K. R., Gupta, T. (2005). Removal of a Basic Dye (Rhodamine-B) From Aqueous Solution by Adsorption Using Timber Industry Waste. Chem. Biochem. Eng., 19(1), 75–80.
[02]
Ndi, J. N., Ketcha, J. M. (2013) The adsorption efficiency of chemically prepared activated carbon from cola nut shells by ZnCl2 on methylene blue, Journal of chemistry, ID469170, 7.
[03]
Dipa, G., Krishna Bhattacharyya, G. (2002) Adsorption of methylene blue on kaolinite Applied. Applied Clay Science, 20, 295–300.
[04]
Zhenwang, L., Zhenlu, C., Jianyan, L. (2000). The PT dye molecular structure and its chromophoric luminescences mechanism. 15th World Conference on Non-Destructive Testing, 15-21 October Rome.
[05]
Tahiri, S. (1992). Traitement et valorisation des déchets solides industriels. Thèse de Doctorat Faculté desciences, Université de Lille, 258p.
[06]
Aerdizzone, S., Gabrielli, G. & Lazzari, P. (1993) Adsorption of methylene blue at solid/liquid and water/air interfaces. Colloids Surface, 76, 149-157.
[07]
Miehr, R., Tratnyek, G. P., Bandstra, Z. J., Scherer, M. M., Alowitz, J. M., Bylaska, J. E. (2004). Diversity of contaminant reduction reactions by zero valent iron: Role of the Reductate. Environ. Sci. Technol., 38, 139–147.
[08]
Leupin, O.X., Hug, S. J. & Badruzzaman, A. B. M. (2005). Arsenic removal from Bangladesh tube well water with filter columns containing zero valent iron filing sand sand. Environ. Sci. Technol., 39, 8032–8037.
[09]
Jones, B. D., Ingle, J. D. (2005). Evaluation of redox indicators for determining sulphate reducing and dechlorinating conditions. Water Res., 39, 4343–4354.
[10]
Kaewprasit, C., Hequet, E., Abidi, N., Gourlot, J. P. (1998). Quality mesurements. Application of methylene blue adsorption to cotton fiber specific surface is a measurement, Part I. Methodology. The Journal of Cotton Sciences, 2, 164-173.
[11]
Lavine, B. K., Auslande, G.and Ritter, J. (2001). Polarographic studies of zero valent iron as a reductant for remediation of nitro aromatics in the environment. Microchem. J., 70, 69–83.
[12]
Tunay, O. (1996). Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, Water Sci. Technol., 34, 9–16.
[13]
Forgacs, E., Tibor, C., Gyula, O. (2004). Removal of synthetic dyes from waste waters. Environ. Int., 30, 953–971.
[14]
Wu, F. C., Tseng, R. L., Juang, R. S. (2005). Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dye sand phenol from water. Separation and Purification Technology, 47, 10-19.
[15]
Kusvuran, E., Gulnaz, O., Irmak, S., Atanur, O. M., Yavuz, H. I., Erbatur, O. (2004). J. Hazard. Mater, 109, 85–93.
[16]
Robinson, T., Mc Mullan, G., Marchant, R. and Nigam, P. (2001). Bioresour. Technol., 77, 247–255.
[17]
Olushola, A. S., Fatoki, O. S., Adekola, F. A., Ximba, B. J. (2013). Kinetics and equilibrium models for the sorption of tributyltin to n ZnO, activated carbon and ZnO/activated carbon composite in artificial sea water. Mar. Pollut. Bull, 72, 222–230.
[18]
Alkane, M., Demirbas, O., Celikcapa, S., Dogan, M. Sorption of acid red 57 from aqueous solution onto sepiolite. J. Hazard Mater, B116, 135–145.
[19]
Tsai, W. T., Lai, C. W., Hsien, K J. (2004). Adsorption kinetics of herbicide paraquat from Aqueous solutionon to activated bleaching earth. Chemosphere, 55, 829–837.
[20]
Al-Ghouti, M., Khraisheh, M. A. M., Ahmad, M. N. M., Allen, S. (2005). Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: a kinetic study. J. Colloid Interface Sci., 287, 6–13.
[21]
Weng, C. H., Pan, Y. F. (2006). Colloids Surf. A: Physicochem. Eng. Aspects, 274, 154-162.
[22]
Gupta, V. K., Mittal, A., Jain, R., Mathur, M., Sikarwar, S. (2006). Adsorption of Safranin-T from waste water using waste materials-activated carbon and activated ricehusks. J. Colloid Interface Sci., 303, 80–86.
[23]
Batzias, F. A., Sidiras, D. K. (2007). Dye adsorption by prehydrolysed beech saw dust in batch and fixed-bed systems. Bioresour. Technol., 98, 1208–1217.
[24]
Ayanda, O. S., Adeyi, O., Durojaiye, B., Olafisoye, O. (2012). Adsorption kinetics and intraparticulate diffusivities of congo red onto kola nut pod carbon. Pol. J. Environ. Stud., 21, 1147–1152.
[25]
Lagergren Zur, S., theorie dersogenannten adsorption gelösterstoffe: Kungliga Svenska Vetenskapsakademiens, Handlingarvol. 24, pp. 1–39, 1898.
[26]
Ho, Y .S. & Mckay, G. (1998). A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Proc. Saf. Environ. P rotec., 76, 332–340.
[27]
Haghseresht, F., Lu, G. (1998). Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels, 12, 1100–1107.
[28]
Weber, T. W., Chakkravorti, R. K. (1974). Pore and solid diffusion models for fixed bed adsorbers. AIChe J., 20,228.
[29]
MadhavaRaoa, M., ChandraRao, G. P., Seshaiah, K., Choudaryand, N. V., Wang, M. C. (2008). Activated carbon from Ceibapentandrahulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions. Waste Management, 28, 849-858.
[30]
Baliti, J., Asnaoui, A., Abouarnadasse, S. (2014). L’élimination du bleu de methylene par une argile naturelle de Taza en milieu aqueux. International Journal of Innovative Researchin Advanced Engineering, 321, 2349-2163.
[31]
Aarfane, A., Salhi, A., ElKrati, M., Tahiri, S., Monkade, M., Lhadi, E. K., Bensitel, M. (2014). Kinetic and thermodynamic study of the adsorption of Red 195 and Methylene blue dyes on fly ash and bottom ash in aqueous medium. J. Mater. Environ. Sci., 5(6), 1927-1939.
[32]
Khare, S. K., Srivastava, R. M., Panday, K. K. Singh, V. N. (1988). Env. Tech. Lett. 9, 1163-1172.
[33]
Gupta, G S., Prasad, G., Singh, V. N. (1988). Removal of chrome dye from carpet effluents using coal. Env. Tech. Lett., 9, 153-161.
[34]
Gupta, G.S., Prasad, G., Singh, V.N. (1990). Removal of chrome dye from aqueous solutions by mixed adsorbents, fly ash and coal. Wat. Res., 24(1),45-50.
[35]
Mohammad Arifur Rahman, Ruhul Amin, S. M., Shafiqul Alam, A. M. (2012). Removal of Methylene Blue from Waste Water Using Activated Carbon Prepared from Rice Husk Dhaka Univ. J. Sci. 60 (2): 185-189.
[36]
Tsai, W. T., Hsieh, M. F., Sun, H. F., Chien, S. F., Chen, H. P. (2002). Adsorption of paraquat onto activated bleaching earth. Bull. Environ. Contam. Toxicol., 69, 189-194.
[37]
Erena, E., Afsin, B. (2009). Removal of basic dye using raw and acid activated bentonite samples. Journal of Hazardous Materials, 166, 830–835.
[38]
Kalavathy Helen, M. and Miranda, L. R. (2010). Moringaoleifera—A solid phase extractant for the removal of copper, nickel and zinc from aqueous solutions. Chemical Engineering Journal, 158, 188–199.
[39]
Bulut, Y., Ayd In, H., (2006). Kinetics and thermodynamics study of methylene blue adsorption on wheat shells, Desalination 194, 259–267.
[40]
Eren, Z., Acar, F. N. (2006). Adsorption of Reactive Black 5 from an aqueous solution: equilibrium and kinetic studies, Desalination 194, 1–10.
[41]
Djamel Belaid, K., Kacha, S. (2011). Étude cinétique et thermodynamique de l'adsorption d'un colorant basique sur la sciure de bois. Journal of Water Science, 24(2), 131-144.
[42]
Emad, N., El Qada, Stephen Allen, J., Gavin Walker, M. (2006) Adsorption of Methylene Blue onto activated carbon produced from steam activated bituminous coal, Chemical Engineering Journal 124 (2006) 103–110.
[43]
Adamson, AW. (2001). Pigments, Physical Chemistry of Surfaces, 5thed., Wiley, New York, 51,25–40.
[44]
Karagoz, S., Tay, T., Ucar, S., Erdem, M. Activated carbons from waste biomass by sulphuric acid activation and their use on methylene blue adsorption. Bioresour. Technol., 99, 6214–6228.
[45]
Gherbi (2008). Thèse de Doctorat, Faculté des sciences de l’Ingénieur, Département de Chimie Industrielle, Université de Constantine, Algérie, 253p.