Chemistry Journal
Articles Information
Chemistry Journal, Vol.4, No.4, Dec. 2018, Pub. Date: Oct. 9, 2018
Transesterification Reaction and Comparative Study of the Fuel Properties of Biodiesels Produced from Vegetable Oils: A Review
Pages: 79-90 Views: 346 Downloads: 200
Authors
[01] Assou Sidohounde, Department of Chemical Engineering-Processes, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin.
[02] Cokou Pascal Agbangnan Dossa, Department of Chemical Engineering-Processes, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin.
[03] Guevara Nonviho, Department of Chemical Engineering-Processes, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin.
[04] Sourou Papin Montcho, Department of Chemical Engineering-Processes, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin.
[05] Dominique Codjo Koko Sohounhloue, Department of Chemical Engineering-Processes, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Abomey-Calavi, Benin.
Abstract
Biomass, of animal or plant origin, has been a highly sought-after energy resource for centuries. Like bioethanol, biodiesel is a fuel produced from biomass and mainly vegetable oils or animal fats. The production of these fuels helps to reduce greenhouse gases and stimulate the local economy. This bibliographic synthesis constitutes a scientific contribution to the production of quality biodiesel, produced locally and more profitable. To do this, we consulted and synthesized the recent information available. Comparisons were also made. At the end of this research, it appears that biodiesel is generally produced by transesterification, interesterification, microemulsification or pyrolysis in order to approximate its characteristics to those of petrodiesel. Transesterification is the most widely used because of its low cost, simplicity, best yields and the quality of the biodiesel obtained. To optimize biodiesel production in this way, operating parameters must be controlled. These are: the type and concentrations of alcohol and catalyst used, the temperature and reaction time, the water content of the alcohol and vegetable oil, the free fatty acid content of the oil and the agitation rate of the reaction medium. The use of distilled water for purification, thin layer chromatography for the quantification of ethyl esters and a probable substitution of the base by a solution of ash from palm nut residues or cotton seeds, would be an asset to limit economic burdens and encourage local production.
Keywords
Biomass, Biodiesel, Transesterification, Operating Parameters
References
[01] GIEC. (2014). Changements climatiques 2014: Rapport de synthèse. Contribution des groupes de travail I, II et III au cinquième rapport d’évaluation du Groupe d’experts inter gouvernemental sur l’évolution du climat. Genève, Suisse, 161p.
[02] Durand, B. (2013). Les combustibles fossiles, grands oubliés du Débat national sur la transition énergétique (DNTE). Conférence du 12 Décembre 2013 au Collège de France.
[03] Mecher, L. C., Sagar, D. V. and Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification-a review. Renewable and Sustainable Energy Reiews, 10 (3): 248-268.
[04] Goldemberg, J. (2008). Environnemental and ecologicol dimensions of biofuels In: Procedings of the conference on the ecological dimensions of biofuels; Washington.
[05] Balat, M. and Balat, H. (2009). Recent trends in global production and utilization of biomethanol fuel. Applied Energy, 86 (11): 2273-2282.
[06] Ballerini, D. et Alazard-Toux, N. (2006). Les biocarburants: état des lieux, perspectives etenjeux du développement, Paris Editions Technip 348 p.
[07] Kulkarni, M. G and Dalai, A. K. (2006). Waste cooking oil – an economical source for biodiesel: A review. Industrial & Engineering Chemistry Research, 45 (9): 2901-2913.
[08] Ramadhas, A. S., Jayaraj, S. and Muraleedharan, C. (2005). Biodiesel production from high FFA rubber seed oil. Fuel, 84 (4): 335–340.
[09] Benoist, A. (2009). Eléments d’adaptation de la méthodologie d’analyse de cycle de vie aux carburants végétaux: cas de la première génération. Paris, France, 226p
[10] BMU. (2009). Erneuerbare Energien in Zahlen; Nationale und international Enwicklung; BMU-Bundesumweltministerium.
[11] Beulin, X. (2008). Les biocarburants: un engagement responsable, Géoéconomie, CAIRN. INFO, 3 (46): 95-106.
[12] Demirbas, A. (2006). Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management, 47 (15-16), 2271–2282.
[13] Shereena, K. M. and Thangaraj, T. (2009). Determination of optimal alkaline catalyst concentration for the maximum production of biodiesel from edible and non-edible oils. Journal of Phytology, 1 (2): 95–99.
[14] Blazek, J., Sebor, G., Pospisil, M., Maxa, D., Simacek, P. and Fiedlerova, Z. (2000). Comparison of exhaust emissions from combustion of commercial, reformulated and bio-diesel fuels. Institut National de Recherche sur les Transports et leur Sécurité, revue française, 70 (2): 596p.
[15] CIRAD. (2008). Guide technique pour une utilization énergétique des huiles végétales. - Brasilia. Patrick Rousset, Coordonnateur, 288p
[16] Soumanou, M. M., Tchobo, F. P., Edorh, A. P. et Accrombessi, G. (2005). Valorisation des huiles végétales d’origine béninoise par alcoolyse enzymatique. Oléagineux, Corps Gras, Lipides, 12 (4): 320-325.
[17] Nikiema, J. et Heitz, M. (2008). Le biodiesel. II. Production — unesynthèse. Revue canadienne de génie civil, 35 (1): 107-117.
[18] Richard, R., Li, Y., Dubreuil, B., Thiebaud-Roux, S. and Prat, L. (2011). On-line monitoring of the transesterification reaction between triglycerides and ethanol using near infrared spectroscopy combined with gas chromatography. Bioresource Technology, 102 (12): 6702–6709.
[19] Demirbas, F. M., Balat, M. and Balat, H. (2011). Biowastes-to-biofuels. Energy Conversion and Management, 52 (4): 1815-1828.
[20] Plunkett, J. W. (2009). Plunkett’s automobile industry Almanac 2008: automobile, truck and specialty vehicule industry market research, statistics, trends and leading companies. Plunkett Research Ltd: Houston, Texas.
[21] W. B. C. S. D. (2009). World Business Council for Sustainable Development (W. B. C. S. D) Mobility 2030: meeting the challenges to sustainability. The sustainable mobility project.
[22] Directive 2001/77/C. E. (2001). Directive du Parlement Européen et du Conseil relative à la promotion de l’électricité produite à partir de sources d’énergie renouvelable ssur le marchéintérieur de l’électricité, 283 (1): 33-40.
[23] Directive 2009/28/CE. (2009). Directive du Parlement Européenet du Conseil relative à la promotion de l’utilisation de l’énergie produite à partir de sources renouvelables et modification puis abrogeant les directives 2011/77/CE et 2003/30/CE.
[24] Sasson, A. (1993). La alimentacion del hombre del manana. UNESCO/Editorial Reverté. SA. Barcelona: 739-748.
[25] Demirbas, A. (2009). Energy Concept and energy, Energy Education Science & Technology Part B, 1: 85-101.
[26] Kan, A. (2009). General characteristics of waste management: a review Energy Education Science & Technology Part A: 55-69.
[27] Kirtay, E. (2009). The role of renewable energy sources in meeting Turkey’s electrical energy demand. Energy Education Science & Technology Part A, 23: 15-30.
[28] Hazar, H., Oner, C. and Nursoy, M. (2009). Effet of GN coating of cylinders on engine performance. Energy Education Science & Technology Part A, 23: 73-85.
[29] Dutta, K., Daverey, A. and Lin, J-G. (2014). Evolution retrospective for alternative fuels: First to fourth generation. Renewable Energy, 69: 114 -122.
[30] Demirbas, A. (2011). Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52: 1280–1287.
[31] Demirbas, F. M. (2011). Biofuels from algae for sustainable development. Applied Energy, 88: 3473-3480.
[32] Hidalgo, M. and Puerta-Fernández, E. (2017). Fermentation of glycerol by a newly discovered anaerobic bacterium: adding value to biodiesel production. Microbial Biotechnology, 10 (3): 528–530.
[33] Demirbas, A. (2005). Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science, 31 (5-6): 466–487.
[34] Nitièma-Yefanova, S., (2013). Optimisation de la production du biodiesel ethylique a partir des huiles vegetales non conventionnelles. Thèse de doctorat à l’Université de Ouagadougou (Burkina Faso), 219p.
[35] Vicente, G., Martınez, M. and Aracil, J. (2007). Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresource Technology, 98 (9): 1724–1733.
[36] Marchetti, J. M., Miguel, V. U. and Errazu, A. F. (2007). Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews, 11 (6): 1300–1311.
[37] Sarin, A. (2012). Biodiesel: Production and Properties. 256p
[38] Knothe, G. andRazon, L. F. (2017). Biodiesel fuels. Progress in Energy and Combustion Science, 58: 36-59.
[39] Hamad, B. (2009). Transestérification des huiles végétales par l’éthanol en conditions douces par catalyses hétérogènes acide et basique. Université Claude Bernard - Lyon I.
[40] Berchmans, H. J. and Hirata, S.(2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99: 1716–1721.
[41] Tiwari, A. K., Kumar, A. and Raheman, H. (2007). Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy, 31, 569–575.
[42] Lu, H., Liu, Y., Zhou, H., Yang, Y., Chen, M. and Liang, B. (2009). Production of biodiesel from Jatropha curcasL. oil. Computers and Chemical Engineering, 33: 1091–1096.
[43] Richard, R. (2011). Transestérification éthanolique d'huile végétale dans des microréacteurs: transposition du batch au continu. Thèse de doctorat: Université de Toulouse (France).
[44] Refaat, A. A. (2010). Different techniques for the production of biodiesel from waste vegetable oil. International Journal of Environmental Science and Technology, 7 (1): 183-213.
[45] Qi, D. H., Geng, L. M., Chen, H., Bian, Y. ZH., Liu, J. and Ren, X. CH. (2009). Combustion and performance evaluation of a diesel engine fueled with biodiesel produced from soybean crude oil. Renewable Energy, 34 (12): 2706 – 2713.
[46] Helwani, Z., Othman, M. R., Aziz N., Fernando, W. J. N. and Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology, 90: 1502-1514.
[47] Cěrnoch, M., Hájek, M. and Skopal, F. (2010). Study of effects of some reaction conditions on ethanolysis of rapeseed oil with dispergation. Bioresource Technology, 101: 1213-1219.
[48] Bouaid, A., Martinez, M. and Aracil, J. (2007). A comparative study of the production of ethyl esters from vegetable oils as a biodiesel fuel optimization by factorial design. Chemical Engineering Journal, 134: 93-99.
[49] Bouaid, A., Martinez, M. and Aracil, J. (2009). Production of biodiesel from bioethanol and Brassica carinataoil: Oxidation stability study. Bioresource Technology, 100: 2234-2239.
[50] Zhou, W., Konar S. K. and Boocock, D. G. B. (2003). Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils. Journal of American Oil Chemists’Society, 80 (4): 367-371.
[51] Sharma, Y. C. and Singh, B. (2009). Development of biodiesel: Current scenario. Renewable and Sustainable Energy Reviews, 13 (6-7): 1646-1651.
[52] Ugheoke, B. I., Patrick, D. O., Kefas, H. M. and Onche, E. O. (2007). Determination of Optimal Catalyst Concentration for Maximum Biodiesel Yield from Tigernut (Cyperus Esculentus) Oil. Leonardo Journal of Sciences, 10: 131-136.
[53] Yusuf, N. and Sirajo, M. (2009). An Experimental Study of Biodiesel Synthesis from Groundnut Oil. Part I: Synthesis of Biodiesel from Groundnut Oil under Varying Operating Conditions. Australian Journal of Basic and Applied Sciences, 3 (3): 1623-1629.
[54] Modiba, E., Osifo, P. and Rutto, H. (2014). Biodiesel production from baobab (Adansonia digitata L.) seed kernel oil and its fuel properties. Industrial Crops and Products, 59: 50-54
[55] Lamayi, D. W., Jauro, A. and Malgwi, A. H. (2016). Production and optimization of ethyl ester Produced from adansonia digitate seed oil. Journal of Applied Chemical Science International, 6 (4): 186-194.
[56] Ofoefule, A. U., Ibeto, C. N., Okoro, U. C. and Onukwuli, O. D. (2013). Biodiesel Production from Tigernut (Cyperus esculentus) Oil and Characterization of its Blend with Petro-diesel. Physical Review & Research International, 3 (2): 145-153.
[57] Igbum, O. G., Eloka-Eboka, A. C. and Nwadinigwe, C. A. (2012). Effects of Transesterification Variables on Yields and Properties of Biodiesel Fuels Produced from Four Virgin Tropical Seeds Oils. International Journal of Environment and Bioenergy, 1 (2): 119-130.
[58] Oyelade, J. O., Idowu, D. O., Oniya, O. O. and Ogunkunle, O. (2017). Optimization of biodiesel production from sandbox (Hura crepitans L.) seed oil using two different catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 39 (12): 1242-1249.
[59] Adepoju, T. F., Adetunji, A. O., Olatunji, E. M. A. and Olatunde, B. J. (2012). HCME: An environment-friendly I. C. engine fuel, 126-137.
[60] Nwufo, O. C. (2013). Effect of temperature on the biodiesel yield from Nigerian physic nut, castor bean, dika nut and sandbox seed oils. International Journal of Ambient Energy, 37 (1): 16-19.
[61] Nitièma-Yefanova, S., Coniglio, L., Schneider, R., Nébié, R. H. C. and Bonzi-Coulibaly, Y. L. (2016). Ethyl biodiesel production from non-edible oils of Balanite saegyptiaca, Azadirachta indica, and Jatropha curcas seeds - Laboratory scale development. Renewable Energy, 96 (Part A): 881-890.
[62] Buhari, M., Danbature, W. L., Muzakir, M. M. and Abubakar, B. A. (2014). Production of Biodiesel from Baobab Seed Oil. Greener Journal of Agricultural Sciences, 4 (2): 22-26.
[63] Chindo, I. Y., Gushit, J. S., Olotu, P. N., Mugana, J. and Takbal, D. N. (2010). Comparism Of The Quality Parameters Of The Seed And Condiment Oil Of Adansonia Digitata. Journal of American Science, 6 (12): 990-994.
[64] Sidohounde, A., Agbangnan Dossa, C. P., Nonviho, G., Montcho, S. P. and Sohounhloue, D. C. K. (2018). Biodiesel potentials of two phenotypes of Cyperus esculentus unconventional oils. Journal of Petroleum Technology and Alternative Fuels, 9 (1): 1-6.
[65] Barminas, J. T., Maina, H. M., Tahir, S., Kubmarawa, D. and Tsware, K. (2001). A preliminary investigation into the biofuel characteristics of tigernut (Cyperus esculentus) oil. Bioresource Technologie, 79 (1): 87-89.
[66] Arafat, S. M., Gaafar, A. M., Basuny, A. M. and Nassef, S. L. (2009). Chufa tubers (Cyperus esculentus L.): as a new source of food. Word Applied Sciences Journal, 7 (2): 151-156.
[67] Adewuyi, A., Awolade, P. O. and Oderinde, R. A. (2014). Hura crepitans Seed Oil: An Alternative Feedstock for Biodiesel Production. Journal of Fuels, 8 p.
[68] Ogbu, I. M. and Ajiwe, V. I. E. (2016). FTIR studies of thermal stability of the oils and methyl esters from Afzelia africana and Hura crepitans seeds. Renewable Energy, 96: 203-208.
[69] Okolie, P. N., Uaboi-Egbenni, P. O. and Ajekwene, A. E. (2012). Extraction and Quality Evaluation of Sandbox Tree Seed (Hura crepitan) Oil. World Journal of Agricultural Sciences, 8 (4), 359-365.
[70] Ezeh, I. E., Umoren, S. A., Essien, E. E. and Udoh, A. P. (2012). Studies on the utilization of Hura crepitans L. seed oil in the preparation of alkyd resins. Industrial Crops and Products, 36 (1): 94–99.
[71] Djenontin, S. T., Dangou, J., Wotto, D. V., Sohounlhoue, K. C. D, Lozano P. and Pioch, D. (2006). Composition en acidesgras, sterols et tocopherols de l’huile végétale non conventionnelle extraite des graines de Jatropha curcas (euphorbiaceae) du Bénin. Journal de la Société Ouest-Africaine de Chimie, 22: 59 – 67.
[72] Akintayo, E. T. (2003). Characteristics and composition of Parkia biglobbossa and Jatropha curcas oils and cakes. Bioresource Technology, 92 (3): 307-310.
[73] Foidl, N., Foidl, G., Sanchez, M., Mittelbach, M. and Hackel, S. (1996). Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresource Technology, 58 (1): 77-82.
[74] Eteshola, E. and Oraedu, A. C. I. (1996). Fatty Acid Compositions of Tigernut Tubers (Cyperus esculentusL.), and Their Mixture. Journal of the American Oil Chemists’ Society, 73 (2): 255-257.
[75] El Hachimi, F., El Antari, A., Boujnah, M., Bendrisse, A., and Alfaiz, C. (2015). Comparaison des huiles des graines et de la teneur en acides gras de différentes populations marocaines de jujubier, de grenadier et de figuier de barbarie [Comparison of oils seed and fatty acid content of various Moroccan populations of jujube, grenadier and prickly pear]. J. Mater. Environ. Sci. 6 (5): 1488-1502.
[76] Gaydou, E. M., Bianchini, J. P. et Ralaimanarivo, A. (1979). Huile de baobab africain: Adansonia digitata L. composition des acides gras et des stérols. Revue française des corps gras, 11: 447-448.
[77] Osman, M. A., (2004). Chemical and Nutrient Analysis of Baobab (Adansonia digitata) Fruit and Seed Protein Solubility. Plant Foods for Human Nutrition, 59 (1): 29-33.
[78] Sidohounde, A., Nonviho, G., Djenontin, S. T., Agbangnan, P., Paris, C. and Sohounhloue, D. C. K. (2014). Physico-Chemical Characterization of Vegetable Oil and Defatted Meal from Two Varieties of Cyperus esculentus from Benin. Chemistry Journal, 4 (1): 1-7.
[79] El-Naggar, E. (2017). Biological Effect of Tiger Nut (Cyperus esculentus L.) Oil on Healthy and Hypercholesterolemia Rats. Syrian Journal of Agricultural Research, 4 (3): 133- 147.
[80] Makareviciene, V., Gumbyte, M., Yunik, A., Kalenska, S., Kalenskii, V., Rachmetov, D. and Sendzikiene, E. (2013). Opportunities for the use of chufa sedge in biodiesel production. Industrial Crops and Products, 50: 633–637.
[81] Owolabi, J. B., Alabi, K. A. and Lajide, L. (2015). Synthesis and characterization of copper metal soaps from Thevetiaperuviana and Hura crepitans seed oils. Scientific research and Essays, 10 (23): 649-654.
[82] Akbar, E., Yaakob, Z., Kamarudin, S. K., Ismail, M. and Salimon, J. (2009). Characteristic and Composition of Jatropha Curcas Oil Seed from Malaysia and its Potential as Biodiesel Feedstock Feedstock. European Journal of Scientific Research, 29 (3): 396-403.
[83] Sendžikienė, E., Gumbytė, M. and Makarevičienė, V. (2011). Evaluation of Cyperus esculentus Oil as a Feedstock for Biodiesel Fuel Production. Engineering and Environment of Biosystems, 5 (1): 437-440.
[84] CIRAD. (2014). Technical guide for the use of vegetable fuel in stationary engines. Harmattan Burkina, 111p.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.