Articles Information
Chemistry Journal, Vol.1, No.3, Jun. 2015, Pub. Date: Apr. 22, 2015
Study of Silver Nanoparticles Electroless Growth and Their Impact on Silicon Properties
Pages: 90-94 Views: 4368 Downloads: 1765
Authors
[01]
R. Benabderrahmane Zaghouani, Photovoltaic Laboratory, Research and Technology Centre of Energy, Borj Cedria Science and Technology Park, Hammam Lif, Tunisia.
[02]
L. Manai, Photovoltaic Laboratory, Research and Technology Centre of Energy, Borj Cedria Science and Technology Park, Hammam Lif, Tunisia.
[03]
B. Dridi Rezgui, Photovoltaic Laboratory, Research and Technology Centre of Energy, Borj Cedria Science and Technology Park, Hammam Lif, Tunisia.
[04]
B. Bessais, Photovoltaic Laboratory, Research and Technology Centre of Energy, Borj Cedria Science and Technology Park, Hammam Lif, Tunisia.
Abstract
This work reports on the parameters influencing the growth of silver nanoparticles (Ag-Nps) on silicon intended to be used in many applications like silicon-based solar cells. Ag-Nps were deposited onto silicon substrates using Electroless Metal Deposition (EMD) in HF/AgNO3 solutions. The effect of the solution concentration and deposition time on the structural and optical properties of Ag-Nps was investigated. The nanoparticles were characterized by optical UV-VIS-NIR spectroscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Optical measurements show that the total reflectivity decreases in the UV-VIS-NIR spectral regions for Ag-Nps samples. In the UV-VIS region, this behavior can be explained by the excitation of the surface plasmons of the Ag-Nps, while in the NIR region it was attributed to light scattering from the Ag-Nps at the silicon substrate surface. SEM analysis shows that the variation of HF and AgNO3 concentrations leads to the growth of Ag-Nps having different average size and surface coverage. A minority carrier lifetime decrease in Ag-Nps/silicon samples is observed due to silver induced defects.
Keywords
Silver Nanoparticles, Electroless Metal Deposition, Plasmonic Effect, Reflectivity, Minority Carrier Lifetime
References
[01]
D.M. Schaadt, B. Feng, E.T. Yu, Appl. Phys. Lett. 86 (2005) 063106 (1-3).
[02]
Y. Shi, X. Wang, W. Liu, T. Yang, R. Xu, Appl. Phys. Lett. 113 (2013) 176101 (1-3).
[03]
Y.A. Akimov, W.S. Koh, Plasmonics. 6 (2011) 155-161.
[04]
S. Pillai, K.R. Catchpole, T.Trupke, M.A. Green, J. Appl. Phys. 101 (2007) 093105 (1-8).
[05]
H.A. Atwater, A. Polman, Nature Mater. 9 (2010) 205-213.
[06]
K.R. Catchpole, A. Polman, Opt. Express. 16 (2008) 21793-21800.
[07]
F. Bai, M. Li, D. Song, H. Yu, B. Jiang, Y. Li, Journal of Solid State Chemistry. 196 (2012) 596-600.
[08]
M. Abouda Lachiheb, M.A. Zrir, N. Nafie, O. Abbes, J. Yakoubi, M. Bouaïcha, Sol Energy.110 (2014) 673-683.
[09]
E. Thouti, N. Chander, V. Dutta, V.K. Komarala, J. Opt. 15 (2013) 035005(1-7).
[10]
N.Bchtouli, S.Aouida, B.Bessais, Microporous and Mesoporous Materials. 187(2012) 82-85.
[11]
R. Benabderrahmane Zaghouani, S. Aouida, N.Bchtouli, B.Bessais, Chemistry Journal.1 (2015) 10-14.
[12]
K. Chan, Z. Aspanut, B. Goh, C. Sow, B. Varghese, S. Abdul Rahman, M.R. Muhamad, Appl. Surf. Sci. 257 (2011) 2208-2213.
[13]
U. Kreibig, M. Vollme, Springer Series in Materials science, (1995).
[14]
R.A. Sinton, A. Cuevas, M. Stuckings, Proc. 25th IEEE Photovoltaic Spec. Conf. (1996) 457-460.
[15]
A. Centeno, J. Breeze, B. Ahmed, H. Reehal, N. Alford, Opt. Lett. 35 (2010) 76-78.