Chemistry Journal
Articles Information
Chemistry Journal, Vol.1, No.4, Aug. 2015, Pub. Date: May 26, 2015
Assessment of Physico-Chemical Parameters for Humic Acids Adsorption on Alumina
Pages: 133-138 Views: 4625 Downloads: 1579
Authors
[01] Chrisdel Chancelice NDJEUMI, Laboratoire des Matériaux et Chimie Industrielle Inorganique, ENSAI – University of Ngaoundere, Ngaoundere, Cameroon; Department of Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Environmental Sciences, ISS – University of Maroua, Maroua, Cameroon.
[02] Andrada MĂICĂNEANU, Department of Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania.
[03] Jean Baptiste BIKE MBAH, Laboratoire des Matériaux et Chimie Industrielle Inorganique, ENSAI – University of Ngaoundere, Ngaoundere, Cameroon.
[04] Ghislain Arnaud MOUTHE ANOMBOGO, Laboratoire des Matériaux et Chimie Industrielle Inorganique, ENSAI – University of Ngaoundere, Ngaoundere, Cameroon; Department of Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Environmental Sciences, ISS – University of Maroua, Maroua, Cameroon.
[05] Richard KAMGA, Laboratoire des Matériaux et Chimie Industrielle Inorganique, ENSAI – University of Ngaoundere, Ngaoundere, Cameroon.
Abstract
The purpose of this study was to investigate the potential use of alumina as adsorbent for humic acids removal from water. The main parameters that influence the adsorption of humic acids were highlighted by means of an experimental design based on Hadamard matrix. It was found that pH is the most important physico-chemical parameter, while particle size and porosity are the main adsorbent property that influences the adsorption efficiency. The optimum conditions to remove 99% of humic acids from solution at 25ºC are: pH 6.0, alumina particle size < 100 μm and pore size of about 15.9 nm. The kinetic modelling of experimental data showed that the process is better described by the pseudo-second-order kinetic model.
Keywords
Humic Acids, Adsorption, Experiment Design, Alumina, Kinetic Modelling
References
[01] Arnarson, T. S., & Keil, R. G. (2000). Mechanisms of pore water organic matter adsorption to montmorillonite. Marine Chemistry, 71(3-4), 309-320.
[02] Daizo, I., Ahmed, H. A. D., Satoshi, K., Hideyki, K., Tohru, S., Tadaya, K., & Kiyohisa, O. (2009). Degradation of marine humic acids by ozone-initiated radical reactions. Chemical Engineering Journal, 148, Issues 2–3, 15, 336–341
[03] Davis, J. A., & Gloor, R. (1981). Adsorption of dissolved organics in lake water by aluminium oxide. Effect of molecular weight. Environ. Sci. Technol., 15, 1223-1229.
[04] Davranche, M., Pourret, O., Gruau, G., Dia, A. (2004). Impact of humate complexation on the adsorption of REE onto Fe oxyhydroxide. Journal of Colloid and Interface Science, 277, 271–279.
[05] Dubey, V., Madhusudhanan, S., Nath, R., Rao, N., & Singh, B. (1996). Active carbon for removal of toxic chemicals from contaminated water. Carbon, 34 (3), 327-330.
[06] Edwards, G. A., & Amirtharajah, A. 1985. Removing color caused by humic acids, J. Am. Water Works Assoc., 77, (3), 50-57.
[07] Gossart, P., (2001). Contribution à l’étude des interactions de la matière organique des sols avec les métaux lourds : Etude structurale et analytique de molécules modèles. Thèse de doctorat soutenu le 18 Décembre 2001 à l’Université des Sciences et Technologies de Lille, 132 p.
[08] Goupy, J. L., (1990). Étude comparative de divers plans d’expériences. Revue de statistique appliquée tome 38, no4, 5-44.
[09] Gu, B., Schmitt, J., Chen, Z., Liang, & Mccarthy, J. F. (1995). Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica et Cosmochimica Acta 59 (2), 219-229.
[10] Gurusamy, A., Lai-Yi, L., & Jiunn-Fwu, L. (2008). Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. Journal of Hazardous Materials, 152 (1): 337-346.
[11] Hideyuki, K., Maki, S., Satoshi, K., Tohru, S., Kiyohisa, O., & Yoshihiro, Y. (2009). Humic acid degradation in aqueous solution by the photo-Fenton process. Chemical Engineering Journal, 137(2), 225–230
[12] Hizal, J., & Apak, R. (2006). Modelling of cadmium (II) adsorption on kaolinite-based clays in the absence and presence of humic acid. Applied Clay Science, 32(3-4): 232–244
[13] Ho, Y. S., McKay, G., Wase D., & Foster C.F. (2000). Study of the sorption of divalent metal ions onto peat. Adsorp. Sci. Technol. 18 639-650.
[14] Jianwei, L., & Yanhui Z. (2012). Adsorption of humic acid from aqueous solution onto unmodified and surfactant-modified chitosan/zeolite composites. Chemical Engineering Journal, Volumes 200–202, 202–213
[15] Jung, A. V., Chanudet, V., Ghanbaja, J., Lartiges, B.S., & Bersillon, J. L. (2005). Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation. Water Res., 3849-3862
[16] Kamga, R., Kayem, G. J., & Rouxhet, P. G. (2000). Adsorption of gossypol cottonseed oil on oxides. Journal of colloid and interface science, 232, 198-206.
[17] Kazpard, V., Latirges, B.S., Frochot, C., d’Espinose, de la Caillerie, J.B., Viriot, M.L., Portal, J.M., Görner, T., & Bersillon, J.L. (2006). Fate of coagulant species and conformational effects during aggregation of a model of a humic substance with Al13 polycations. Water research, 40, 1965-1974.
[18] Lacey, A.L., Hayes, M.H.B., & Vaidyanathan, L.V. (1997). Preparation of iron pillared clays and their applications for sorption of humic substances. Humic Substances, Peats, and Sludges. Health and environnemental aspect, 219–225.
[19] Pourret, O., Davranche, M., Gruau, G., & Dia, A., (2007). Competition between humic acids and carbonates for rare earth elements complexation. Journal of Colloid and Interface Science 305, 25–31.
[20] Sieliechi, J.M., Lartiges, B.S., Kayem, G.J., Hupont, S., Frochot, C., Thiemed, J., Ghanbaja, J., D’Espinose, J.B., De La Caillerie, Barres, O., Kamga, R., Levitzg, P., & Michot L.J. (2008). Changes in humic acids conformation during coagulation with ferric chloride: Implications for drinking water treatment, Water research 42: 2111-2123.
[21] Suksaroj Chaisri, (2006). Nanofiltration et oxydation avancée de solutions de colorants. Application au traitement d’effluents de l’industrie textiles. Thèse de doctorat soutenu le 20 Mai 2006 à L’école doctorale de l’Université Montpellier II, 135p.
[22] Thurman, E.M., Wershaw, R.L., Malcolm, R.L., & Pinckney, D.J. (1981). Molecular size of aquatic humic substances. Organic Geochemistry 4, 27–35.
[23] Unai Iriarte-Velasco, Jon I. A´lvarez-Uriarte, Noemı Chimeno-Alanı´s, & Juan R. Gonza´ lez-Velasco, (2009). Evaluation of the Adsorption of Aquatic Humic Substances in Batch and Column Experiments by Thermally Modified Activated Carbons. Ind. Eng. Chem. Res., 48, 5445–5453
[24] Wendong, W., Wen, W., Qinghai Fan, Yabo, W., Zixia, Q., & Xiaochang, W. (2014). Effects of UV radiation on humic acid coagulation characteristics in drinking water treatment processes. Chemical Engineering Journal, Volume 256, 137–143
[25] Wilbulswas, R., White, D.A., & Rautiu, R. (1998). Removal of humic substances from water by alumina-based Al-hydroxy intercalated clays. Environmental Technology 19, 627–632.
[26] Zhou, J. L., Rowland, S., Mantoura, R. F. C., & Braven, J. (1994). The formation of humic coatings on mineral particules under simulated estuarine conditions - a mechanistic study. Water Research, 28, 571-579.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.