International Journal of Animal Biology
Articles Information
International Journal of Animal Biology, Vol.1, No.5, Oct. 2015, Pub. Date: Jul. 28, 2015
Effects of D-Galactose Induced Oxidative Stress and Ethanolic Extracts of Bacopa monniera and Lactuca sativa on Non-Specific Esterase in Midgut of Silkworm Bombyx mori
Pages: 231-236 Views: 1906 Downloads: 959
[01] Y. B. Gaikwad, Department of Zoology, Shivaji University, Kolhapur, M. S. India.
[02] J. A. Chavan, Department of Zoology, Shivaji University, Kolhapur, M. S. India.
[03] G. P. Bhawane, Department of Zoology, Shivaji University, Kolhapur, M. S. India.
[04] N. K. Desai, Department of Chemistry, Shivaji University, Kolhapur, M. S. India.
The non-specific esterase (NSE) activity was estimated in the midgut of simultaneously and independently treated larvae of silkworm Bombyx mori (Race-PM) with D-galactose and ethanolic extract of Bacopa monniera and Lactuca sativa. Treatments of only D-galactose showed non-significant (p > 0.05) decrease in NSE activity as compared with control group. Concomitant treatment of D-galactose and ethanolic extract of B. monniera and L. sativa showed non-significant change in non-specific esterase activity by as compared with control group. There was significant (p < 0.05) change in NSE activity in the groups treated with only ethanolic extract of B. monniera and L. sativa. The lipid peroxidation and fluorescence was measured to analyze the extent of oxidative stress. The results showed high degree of positive correlation (r =0.8088) between oxidative stress and non-specific esterase activity.
Lipid Peroxidation, Fluorescence, Aging and Correlation
[01] Argentine, J.A. and James, A.A. (1995). Characterization of a salivary gland-specific esterase in the vector mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 25, 621–630.
[02] Bang F. B. (1975). Phagocytosis in invertebrates. In Maramorosch, K. and Shope, R. E., eds., Invertebrate Immunity, Academic Press, New York, pp. 137-151.
[03] Bhattacharya, S.K., Bhattacharya, A., Kumar, A., Ghosal, S. (2000). Antioxidant activity of B. monniera in rat frontal cortex, striatum and hippocampus. Phytotherapy Research 14, 174–179.
[04] Buege, J. A. and Aust, S. D. (1987). Microsomal lipid peroxidation. Methods Enzymol. 52, 302–310.
[05] Caldwell, C. R. (2003). Alkylperoxyl radical scavenging activity of red leaf lettuce (Lactuca sativa L.) phenolics. Journal of Agricultural and Food Chemistry, 51, 4589–4595.
[06] Campbell P. M., Yen J. L. and Masoumi A. (1998). Cross-resistance patterns among Lucilia cuprina (Diptera: Calliphoridae) resistant to organophosphorus insecticides. J Economic Entomol. 91(2): 367-375, 1998.
[07] Cao, G., Sofic, E. and Prior, R. L. (1996). Antioxidant capacity of tea and common vegetables. Journal of Agricultural and Food Chemistry , 44, 3426–3431.
[08] Cheng T. C., Cali A. and Foley D. A. (1974). Cellular reactions in marine pelecypods as a factor influencing endosymbioses. In Vernberg, W. B., ed., Symhosis in the Sea, Univ. South Carolina Press, Columbia, pp. 62-91.
[09] Chillara Sivaramakrishna, Rao Chirravuri V., Golakoti Trimurtulu, Mulabagal Vanisreeb, Gottumukkala V. Subbaraju (2005). Triterpenoid glycosides from Bacopa monnieri. Phytochemistry 66 (2005) 2719–2728.
[10] Chu, Y. F., Sun, J., Wu, X. and Liu, R. H. (2002). Antioxidant and antiproliferative activities of common vegetables. Journal of Agricultural and Food Chemistry, 50, 6910–6916.
[11] Claudianos C, Russell R. J. and Oakeshott J. G. (1999). The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochemistry and Molecular Biology. 29(8): 675-686, 1999.
[12] Cui X, Wang L, Zuo P, Han Z, Fang Z, Li W, Liu J. (2004). D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology. 2004; 5(5):317-25.
[13] Dillard Cora J. and Tappel A. L. (1984). Fluorescent damage products of lipid peroxidation. Methods in Enzymology, Volume 105, 1984, Pages 337–341.
[14] Feyereisen R. (1995). Molecular biology of insecticide resistance. T oxicology Letters. 82(3): 83-90, 1995.
[15] Field, L. M. and Devonshire, A. L. (1998). Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochem. J. 330, 169-173.
[16] Finkel Toren and Holbrook Nikki J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, Vol 408, 239 – 247.
[17] Gaikwad Y. B., Gaikwad S. M., Bhawane GP (2010) Effect of induced oxidative stress and herbal extracts on acid phosphatase activity in lysosomal and microsomal fractions of midgut tissue of silkworm Bombyx mori. Journal of insect science, Volume - 10, 1 -9.
[18] Gajare, K.A., Deshmukh, A.A. and Pillai M.M. (2007). Neuroprotective effect of Bacopa monniera Linn. Extract on lipofuscinogenesis and fluorescence product in the brain of D-galactose induced ageing accelerated mice. J. Cell Tissue Res.7 (2): 1167-1172, (2007).
[19] Guillemaud, T., Makate, N., Raymond, M., Hirst, B. and Callaghan, A. (1997) Esterase gene ampli¢cation in Culex pipiens. Insect Molec. Biol. 6, 319-327.
[20] Havsteen B.H. (2002). The biochemistry and medical significance of flavonoids. Pharmacology and therapeutics 96 (2002), 67-202.
[21] Healy, M. J., Dumancic, M. M., and Oakeshott, J. G. (1991). Biochemical and physiological studies of soluble esterases from Drosophila melanogaster. Biochem. Genet. 29:365.
[22] Jimenez D.R. and Gilliam M. (1990). Ultrastructure of the ventriculus of the honey bee, Apis mellifera (LJ: Cytochemical localization of acid phosphatase, alkaline phosphatase, and nonspecific esterase. Cell Tissue Res 261:431-443.
[23] Kalamade V. I., Pillai M.M. and Kalamade I. S. (2008). Effect of Bacopa monniera (Linn.) on lipid peroxidation and lipofuscinogenesis in prostate gland of D-galactose induced aging mice, Mus musculus. Indian J Exp Biol. 2008;46 (7): 547-549.
[24] Karotam, J. and Oakeshott, J. G. (1993). Regulatory aspects of esterase 6 activity variation in sibling Drosophila species. Heredity 71, 41–50.
[25] Kerlin, R.L. and Hughes, S. (1992). Enzymes in saliva from four parasitic arthropods. Med. Vet. Entomol. 6, 121–126.
[26] Kirtikar K. R. and Basu B. D. (1994). Indian Medicinal plants. Vol I, 1816-1817.
[27] Kozaki T., Shono T., Tomita T. and Kono Y. (2001). Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica, associated with point mutations. Insect Biochem Mol Biol. 31: 991-997, 2001.
[28] Liu A., Ma Y., and Zhu Z. (2009). Protective effect of selenoarginine against oxidative stress in D-galactose-induced aging mice, Bioscience, Biotechnology and Biochemistry, vol. 73, no. 7, pp. 1461–1464.
[29] Lowry, O. R., Rosebrow, N. J. and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Biol. Chem. 193, 265 – 275.
[30] Krishnaswami S., Narsimhana N., Suryanarayana S.K., Kumararaji S. (1978). Silkworm rearing, Manual on Sericulture Vol.2. FAO. Agricultural servicesBulletin. No. 15.
[31] Menozzi P., Shi M. A., Lougarre A., Tang Z. H. and Fournier D. (2004). Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evolutionary Biology 4: 4.
[32] Michelson E. H. (1975). Cellular defense mechanisms and tissue alterations in gastropod molluscs. In Maramorosch, K. and Shope, R. E., eds., lnvertebrate Immunity, Academic Press, New York, pp. 181-195.
[33] Mutero A., Pralavorio M., Bride J. M. and Fournier D. (1994) Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proceedings of the national academy of sciences 91: 5922–5926.
[34] Nascimento A.P. and Bicudo H.E.M.D. (2002). Esterase patterns and phylogenetic relationships of Drosophila species in the saltans subgroup (saltans group). Genetica. 114(1): 41-51, 2002.
[35] Nijhout, H. F. (1994). Insect Hormones. Princeton University Press, Princeton.
[36] Oakeshott, J. G., van Papenrecht E.A., Boyce T. M., Russell R.J. and Healy M. J. (1993). Evolutionary genetics of Drosophila esterases. Genetica. 90: 239-268, 1993.
[37] Qun Shan, Jun Lu, Yuanlin Zheng, Jing Li, Zhong Zhou, Bin Hu, Zifeng Zhang, Shaohua Fan, Zhen Mao, Yong-jian Wang and Daifu Ma. (2009). Purple sweet potato color ameliorates cognition deficits and attenuates oxidative damage and inflammation in aging mouse brain induced by D-Galactose. Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology, Volume 2009, Article ID 564737, 1 -9.
[38] Richmond, R. C. and Senior, A. (1991). Esterase 6 of Drosophila melanogaster: Kinetics transfer to females, decay in females and males recovery. J. Insect Physiol. 27, 849–853.
[39] Riddiford, L. M. (1994). Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Adv. Insect Physiol. 24, 213-274.
[40] Rosario-Cruz, R., Miranda-Miranda E., Garcia-Vasquez Z. and Ortiz-Estrada M. (1997). Detection of esterase activity in susceptible and organophosphate resistant strains of the cattle tick Boophilus microplus (Acari: Ixodidae). Bull. Entomol. Res. 87, 197–202.
[41] Shan Q. Lu J. Zheng Y. Li J. Zhou Z. Hu B. Zhang Z. Fan S. Mao Z. Wang YJ. Ma D. Purple sweet potato color ameliorates cognition deficits and attenuates oxidative damage and inflammation in aging mouse brain induced by d-galactose. J Biomed Biotechnol. 2009 doi: 10.1155/2009/564737.
[42] Sharma, G. and Sharma, S. P. (1981). Age dependent changes in esterases of Callosbruchus maculatus Fab. (Bruchidae: Coleoplerii). Exp. Aging Res, 7. 107-115.
[43] Sohal, R. S., S. Agarwal, and B. H. Sohal (1995). Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus).Mech. Ageing Dev. 81: 15 – 25, 1995.
[44] Standtman E. R. (1992). Protein oxidation and aging. Science, 257: 1220 –1224.
[45] Su Wen Sun, Hu Qing Yu, Hong Zhang, Yuan Lin Zheng, Jian Jun Wang and Lan Luo (2007). Quercetin attenuates spontaneous behavior and spatial memory impairment ind-galactose–treated mice by increasing brain antioxidant capacity. Nutrition Research 27 (2007) 169–175.
[46] Subramamiam T. (1982) Quantitative assay of non-specific esterase in the developing egg of Emerita asiatica. Manual for research methods for marine invertebrate reproduction. CMFRI special publication No. 9.
[47] Taskin V. and Kence M. (2004). The genetic basis of malathion resistance in housefly (Musca domestica L.) strains from Turkey. Russian Journal of Genetics. 40: 1475-1482, 2004.
[48] Vinson, J. A., Hao, Y., Su, X. and Zubik, L. (1998). Phenol antioxidant quantity and quality in foods: Vegetables. Journal of Agricultural and Food Chemistry, 46, 3630–3634.
[49] Wang W., Li S., Dong H.-P., Lv S., and Tang Y.Y. (2009). Differential impairment of spatial and nonspatial cognition in a mouse model of brain aging, Life Sciences, vol. 85, no. 3-4, pp. 127– 135.
[50] Whyard, S., Down, A. E. R. and Walker, V. K. (1995). Characteriza-tion of a novel esterase conferring insecticide resistance in the mosquito Culex tarsalis. Arch. Insect Biochem. Physiol. 29, 329–342.
[51] Willard O. Granath, Jr.; Timothy and P. Yoshino. (1984). Intracellular Distribution of Lysosomal Enzymes within the Hemocytes of Biomphalaria glabrata. Transactions of the American Microscopical Society, Vol. 103, No. 1. (Jan., 1984), pp. 38-43.
[52] Wu D., Lu J., Zheng Y., Z. Zhou, Q. Shan, and D. F. Ma (2008.). Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins. Neurobiology of Learning and Memory, vol. 90, no. 1, pp. 19–27.
[53] Wu, D.J. and Hou, R.F. (1993). Relationship between thermotolerancy and heat-stable esterase in the silkworm Bombyx mori L. (Lepidoptera: Bombycidae). Appl. Entomol. Zool. 28, 371–377.
[54] Wyatt G.R. and Davey K.G. (1996). Cellular and molecular actions of juvenile hor-mone. II. Roles of juvenile hormone in adult insects. Adv. Insect Physiol. 26, 1-155.
[55] Zera, A. J., T. Sanger, J. Hanes, and L. Harshman. (2002). Purification and characterization of hemolymph juvenile hormone esterase from the cricket, Gryllus assimilis. Arch. Insect Biochem. Physiol, 4941-55.
[56] Zera, A.J., Gu, X. and Zeisset M. (1992). Characterization of juvenile hormone esterase from genetically-determined wing morphs of the cricket Gryllus rubens. Insect Biochem. Mol. Biol. 22, 829–839.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.