International Journal of Bioinformatics and Biomedical Engineering
Articles Information
International Journal of Bioinformatics and Biomedical Engineering, Vol.1, No.1, Jul. 2015, Pub. Date: Jul. 9, 2015
Rhizosphere Microorganisms as Inducers for Phytoremediation a Review
Pages: 7-15 Views: 4796 Downloads: 2002
Authors
[01] Abdel Ghany T. M., Botany and Microbiology Department, Faculty of Science, AL, Azhar University, Cairo, Egypt; Biology Department, Faculty of Science, Jazan University, Jazan, Kingdom Saudi Arabia.
[02] Mohamed A. Al Abboud, Biology Department, Faculty of Science, Jazan University, Jazan, Kingdom Saudi Arabia.
[03] Moustafa E. Negm, AL Ghad International Colleges for Applied Medical Science, Riyadh, Kingdom Saudi Arabia.
[04] Abdel-Rahman M. Shater, Biology Department, Faculty of Science, Jazan University, Jazan, Kingdom Saudi Arabia; Biology Department, Faculty of Science, Thamar, Thamar University, Yemen.
Abstract
Phytoremediation is a relatively new technology that offers clear advantages over traditional methods for site cleanup. Plants and their associated rhizosphere microorganisms can be used in the cleanup of environmental pollution. Knowledge of the mechanisms involved may lead to the development of more efficient phytoremadiants and better management practices such as development of transgenic plants. In this review, current status of several subsets of phytoremediation are discussed which includes: Phytoextraction: the uptake and translocation of dissolved-phase contaminants from groundwater into plant tissue., Phytovolatilization: the transfer of the contaminant to air via plant transpiration. Rhizosphere degradation: the breakdown of organic contaminants within the microbe rich rhizosphere (soil surrounding the root). Phytodegradation: the breakdown of organic contaminants within plant tissue. Hydraulic control: the use of trees to intercept and transpire large quantities of groundwater or surface water in order to contain or control the migration of contaminants. There is need for further understanding on the processes that affect pollutant uptake and sequestration.
Keywords
Rhizosphere, Microorganisms, Inducers, Phytoremediation
References
[01] Abdel Ghany T. M.; Alawlaqi M. M. and Al Abboud M. A. (2013) Role of biofertilizers in agriculture: a brief review Mycopath, 11(2): 95-101.
[02] Abdel Ghany T. M. (2014) Eco-friendly and Safe Role of Juniperus procera in Controlling of Fungal Growth and Secondary Metabolites. J. Plant Pathol Microbiol 5(3): 1-9..
[03] Alexander, M. (1977) Introduction to Soil Microbiology. 2nd ed. John Wiley, New York, pp. 423-437.
[04] Anderson T (1997) Development of a phytoremediation handbook: consideration for enhancing microbial degradation in the rhizosphere. http://es.epa.gov/ncerga/ru/index.html.
[05] Anderson, T. A., E. A. Guthrie, and B.T. Walton (1993) "Bioremediation," Environmental Science and Technology. 27(13): 2630-2636.
[06] Aprill, W. and R.C. Sims (1990) Evaluation of the use of prairie grasses for stimulat¬ing polycyclic aromatic hydrocarbon treatment in soils. Chemosphere 20: 253-265.
[07] Barber, D. A. and J. K. Martin (1976) The release of organic substances by cereal roots into soil. New Phytol. 76: 68.
[08] Barber, S. A. (1984) Soil Nutrient Bioavailability. Wiley-Interscience, New York.
[09] Bhadra, R., D. G. Wayment, J. B. Hughes, and J. V. Shanks (1999b) Confirmation of conjugation processes during TNT metabolism by axenic roots. Environ. Sci. Tech¬nol. 33: 446-452.
[10] Bhadra, R., R.J. Spanggord, D.G. Wayment, J.B. Hughes, and J.V. Shanks (1999a) Characterization of Oxidation products of TNT metabolism in aquatic phytoreme¬diation systems of Myriophyllum aquaticum. Environ. Sci. Technol. 33: 3354-3361.
[11] Brazil GM, Kenefick L., Callanan M., Haro A., de Lorenzo V., Dowling DN. Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol. 1995; 61:1946–52.
[12] Burken, J. G., J. V. Shanks, and P. L. Thompson (2000) Phytoremediation and plant metabolism of explosives and nitroaromatic compounds. In: Biodegradation of Nitroaromatic Compounds and Explosives. J. C. Spain, J. B. Hughes, and H. J. Knackmuss, eds. Lewis Publishers, Boca Raton, Florida, pp. 239-275.
[13] Chowdhury A. S. M. H. K, Das P., Sarkar I., Islam R., Aksharin L., Parvin F., Islam Z., Faris M. and Shaekh M. P. E. (2015). Phytoremediation of Heavy Metals (Ar, Cd, Pb) Using Transgenic Rice Plants - an Overview; international Journal of Scientific & Engineering Research, 6,1, 878-883.
[14] Detling, J. K. (1979) Processes controlling blue grama production on the shortgrass prairie. In: Perspectives in grassland ecology. N. French, ed. Springer-Verlag, New York, p. 25.
[15] Dhanker, O., J. Tucker, V. Nzengung, and N. Wolfe (1999) “Isolation, Purification and Partial Characterization of Plant Dehalogenase-like Activity from Waterweed (Elodea Canadensis),” In Phytoremediation and innovative strategies for specialized remedial applications 5th International Symposium In-Situ and On-Site Bioremediation. Phytoremediation, Eds: Andrea Leeson and Bruce C. Alleman. Batelle Press, Columbus. OH pp. 145-150.
[16] Eapen S, Suseelan KN, Tivarekar S, Kotwal SA, Mitra R. (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res., 91:127–33.
[17] EPA (2000). A Citizen’s Guide to Phytoremediation. EPA 542-F-98-011. United States Environmental Protection Agency, p. 6. Available at: http//www.bugsatwork.com/ XYCLONYX/EPA_GUIDES /PHYTO.PDF.
[18] Evans, G. M. and J. C. Furlong. (2003) Environmental Biotechnology: theory and applications. (West Sussex, UK, John Wiley and Sons.
[19] French, C. E., S. J. Rosser, et al. (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat. Biotechnol. 17, 491-4.
[20] Gordon M, Choe N, Duffy J, Ekuan G, Heilman P, Muiznieks I, Ruszaj M, Shurtleff BB, Strand S, Wilmoth J, Newman LA. (1998) Phytoremediation of trichloroethylene with hybrid poplars. Environ Health Perspect. 106, 1001-4.
[21] Gunther T., U. Dornberger, and W. Fritsche (1996). Effects of ryegrass on biodegra¬dation of hydrocarbons in soil. Chemosphere 33: 203-215.
[22] Hannink, N., S. J. Rosser, et al. (2001). Phytodetoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat. Biotechnol. 19, 1168-72.
[23] Hatzinger, P.B. and M. Alexander (1995). Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29(12): 537-545.
[24] Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM. (2005). A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J., 81:139–47.
[25] Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM. (2004) A multiprocess phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut., 130:465–76.
[26] Chris O. Nwoko (2010) Trends in phytoremediation of toxic elemental and organic pollutants. African Journal of Biotechnology Vol. 9 (37), pp. 6010-6016.
[27] January MC, Cutright TJ, Van Keulen H, Wei R. (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere. 2008; 70:531–7.
[28] Kabata-Pendias A, Pendias H. Trace Elements in the Soil and Plants. Boca Raton, FL: CRC Press; 1989.
[29] Kassenga, G. (2003) “Treatment of Chlorinated Volatile Organic Compounds Using Wetland Systems,” PhD Dissertation Louisiana State University, The Department of Civil and Environmental Engineering.
[30] Kozlowski, T., and S. Pallardy (1997) “Physiology of Woody Plants,” Second Edition. Academic Press, San Diego.
[31] Larson, S.L. (1997). Fate of explosive contaminants in plants. In: Bioremediation of Surface and Subsurface Contamination. R.K. Bajpai and M.E. Zappi, eds. Ann. New York Acad. Sci., New York, 829: 195-201.
[32] Larson, S.L., C.A. Weiss, L.B. Escalon, and D.B. Parker (1999b). Increased extraction efficiency of acetonitrile/water mixtures for explosive determination in plant tissues. Chemosphere 38(9): 2153-2162.
[33] Larson, S. L., R. P. Jones, L. Escalon, and D. Parker (1999a). Classification of explosives transformation products in plant tissue. Environ. Toxicol. Chem. 18(6): 1270-1276.
[34] Lee, E. (1996). The fate of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea. Ph.D. dissertation, Dept. of Civil Engineering, Kansas State University, Manhattan.
[35] Lynch JM. 1990The rhizosphere. New York: John Wiley and Sons.
[36] Macek, T., M. Mackova, and J. Kas (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18: 23-34.
[37] Mahro, B., G. Schaefer, and M. Kastner (1994). Pathways of microbial degradation of polycyclic aromatic hydrocarbons in soil. In: Bioremediation of Chlorinated and Aromatic Hydrocarbon Compounds. R.E. Hinchee, A. Leeson, L. Semprini, and S.K. Ong, eds. Lewis Publishers, Boca Raton, Florida, pp. 203-217.
[38] Marschner P., Crowley D., Yang C.H. (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil. , 261: 199–208.
[39] McCutcheon, S. and J. Schnoor (eds.) (2003) Phytoremediation Transformation and Control of Contaminants. John Wiley & Sons, Inc., Hoboken, New Jersey.
[40] Narayanan, M., L. C. Davis, and L.E. Erickson (1995) “Fate of Volatile Chlorinated Organic Compounds in a Laboratory Chamber with Alfalfa Plants,” Environmental Science and Technology. 29(9): 2437-2444.
[41] Newman LA, Reynolds CM. 2004. Phytodegradation of organic compounds. Curr Opin Biotechnol.; 15:225–30.
[42] Nichols, T. D., D. C. Wolf, H.B. Rogers, C. A. Beyrouty, and CM. Reynolds (1997). Rhizosphere microbial populations in contaminated soils. Water, Air Soil Pollut. 95: 165-178.
[43] Normander B, Hendriksen NB, Nybroe O. 1999. Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl Environ Microbiol. ; 65:4646–51.
[44] Nzengung, V., N. Wolfe, D. Rennels, and S. McCutcheon (1999). “Use of Aquatic Plants and Algae for Decontamination of Waters Polluted with Chlorinated Alkanes,” International Journal of Phytoremediation. 1(3): 203-226.
[45] Palazzo, A. J. and D. C. Leggett (1986) Effect and disposition of TNT in terrestrial plants. J. Environ. Qual. 15(1): 49-52.
[46] Paul, E. A. and F. E. Clark (1989) Soil Microbiology and Biochemistry. Academic Press, San Diego, California, pp. 81-84.
[47] Pavlostathis, S.G., K.K. Comstock, M.E. Jacobson, and M.F. Saunders (1998). Trans¬formation of 2,4,6-trinitrotoluene by the aquatic plant Myriophyllum spicaticum. Environ. Toxicol. Chem. 17(11): 2266-2273.
[48] Pradhan, S.P., J.R. Conrad, J.R. Paterek, and V.J. Srivastava (1998). Potential of phytoremediation for treatment of PAHs in soil at MGP sites. J. Soil Contam. 7: 467-480.
[49] Qui, X„ S.I. Shah, E.W. Kendall, D.L. Sorenson, R.C. Sims, and M.C. Engelke (1994) Grass-enhanced bioremediation for clay soils contaminated with polynuclear aro¬matic hydrocarbons. In: Bioremediation through Rhizosphere Technology. ACS Symposium Series No. 563. T.A. Anderson and J.R. Coats, eds. American Chem¬ical Society, Washington, D.C, pp. 142-157.
[50] Quinn, J., M. Negri, R. Hinchman, L. Moos, J. Woznaik, E. Gatliff (2001) “Predicting the Effect of Deep-rooted Hybrid Poplars on the Groundwater Flow System at a Large-scale Phytoremediation Site,” International Journal of Phytoremediation. 2(3): 193-211.
[51] Radwan S. S., H. Al-Awadhi, N. A. Sorkhoh, and I. M. El-Nemr (1998) Rhizospheric hydrocarbon-utilizing microorganisms as potential contributors to phytoremedia¬tion for the oily Kuwaiti desert. Microbiol. Res. 153: 247-251.
[52] Raskin, I., and Ensley, B. D. (2000) Recent developments for in situ treatment of metal contaminated soils. In: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. John Wiley & Sons Inc., New York. Available at: http//clu-n.org/techfocus.
[53] Reilley, K., M. K. Banks, and A. P. Schwab (1996) Dissipation of polynuclear aromatic hydrocarbons in the rhizosphere. J. Environ. Qual. 25: 212-219.
[54] Rieger, P.-G. and H.-J. Knackmuss (1995) Basic knowledge and perspectives on bio-degradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in con¬taminated soil. In: Biodegradation of Nitroaromatic Compounds. J.C. Spain, ed. Plenum Press, New York, pp. 1-18.
[55] Rivera, R., V. F. Medina, S. L. Larson, and S. C. McCutcheon (1998) Phytotreatment of TNT-contaminated groundwater. Soil Contam. 7(4): 511-529.
[56] Rovira, A. D. and CB. Davey (1974) Biology of the rhizosphere. In: The Plant Root and its Environment. E. W. Carson, ed., University Press of Virginia, Charlottesville, pp. 153-204.
[57] Ryan, J. A., R. M. Bell, J. M. Davidson, and G. A. O'Connor (1988). “Plant Uptake of Nonionic Organic Chemicals from Spills,” Chemosphere. 17: 2299-2323.
[58] Saleh S, Huang XD, Greenberg BM, Glick BR. (2004) Phytoremediation of persistent organic contaminants in the environment. In: Singh A,Ward O, editors. Soil Biology: vol. 1. Applied Bioremediation and Phytoremediation. Berlin: Springer-Verlag, p. 115–34.
[59] Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Mol Biol 49:643–668.
[60] Salt, D.E., R.D. Smith, and I. Raskin (1998) Phytoremediation. In: Annual Review of Plant Physiology and Plant Molecular Biology. Annual Reviews, Palo Alto, California: 49: 643-648.
[61] Scheidemann, P., A. Klunk, C. Sens, and D. Werner (1998) Species dependent uptake and tolerance of nitroaromatic compounds by higher plants. J. Plant Physiol. 152(2-3): 242-247.
[62] Schnoor, J. L., L. A. Licht, S.C. McCutcheon, N. L. Wolfe, and L. H. Carreira (1995) Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29: 318A-323A.
[63] Schwab, A. P. and M.K. Banks (1994) Biologically mediated dissipation of polyaro-matic hydrocarbons in the root zone. In: Bioremediation through Rhizosphere Tech¬nology. ACS Symposium Series No. 563. T.A. Anderson and J. R. Coats, eds. American Chemical Society, Washington, D. C., pp. 132-141.
[64] Schwab, A. P., M. K. Banks, and M. Arunuchalam (1995) Biodegradation of polycyclic aromatic hydrocarbons in rhizosphere soil. In: Bioremediation of Recalcitrant Organics. R. E. Hinchee, R. H. Hoeppel, and D.B. Anderson, eds. Battelle Press, Columbus, Ohio, pp. 23-29.
[65] Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden (1993) Environmental Or¬ganic Chemistry. John Wiley, New York, pp. 682.
[66] Tate, R. L. (1995) Soil Microbiology. John Wiley, New York. p. 107.
[67] Teng Y, Luo Y, Ma W, Zhu L, Ren W, Luo Y, Christie P and Li Z (2015) Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities. Front. Plant Sci. 6:438. doi: 10.3389/fpls.2015.00438
[68] Thomas, P. and J. Krueger (1999). “Salt Tolerance of Woody Phreatophytes for Phytoremediation Applications,” In Phytoremediation and Innovative Strategies for Specialized Remedial Applications, Editors, Andrea Leeson and Bruce C. Alleman, Battelle Press.
[69] Tinker PB. 1984. The role of microorganisms in mediating and facilitating the uptake of plant nutrients from soil. Plant Soil. 1984; 76:77–91.
[70] Trapp, S. and C. McFarlane (1995) Plant Contamination: Modeling and Simulation of Organic Processes. Lewis Publishers, Boca Raton, Florida, 254 pp.
[71] USEPA (United States Environmental Protection Agency) (2000) Introduction to Phytoremediation. EPA 600/R-99/107, U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH.
[72] van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (1999) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and wate. CRC, Boca Raton, pp 265-281. ISBN ISBN 1-56670- 450-2.
[73] Vanek T. , Ales Nepovim , Radka Podlipna , Anja Hebner , Zuzana Vavrikova , Andre Gerth , Hardmuth Thomas and Stanislav Smrcek 2006. Phytoremediation of explosives in toxic wastes .Phytoremediation of Explosives in Toxic Wastes. 455- 465.
[74] Vargas JP, Esquivel GG, García FE. (2002) Papel ecológico de la flora rizosférica en fitorremediación. Av Perspect. , 21:297–300.
[75] Wildung, R. E., T. R. Garland, and R. L. Buschbom (1975) The interdependent effects of soil temperature and water content on soil respiration rate and plant root de¬composition in arid grassland soils. Soil Biol. Biochem. 7: 373-378.
[76] Wilson, J. M. and D. M. Griffin (1975) Water potential and the respiration of micro¬organisms in the soil. Soil Biol. Biochem. 7: 199-204.
[77] Wolfe, N. L., T. Y. Ou, L. Camera, and D. Gunnison (1994) Alternative methods for biological destruction of TNT: a preliminary feasibility assessment of enzymatic degradation. U.S. Army Corps of Engineers Waterways Technical Report IRRP-94-3, Vicksburg, Mississippi.
[78] Yang J, Kloepper JW, Ryu C-M. (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci.;14:1–4.
[79] Yasin, M., El-Mehdawi, A. F., Jahn, C. E., Anwar, A, Turner, M. F. S., Faisal, M., et al. (2015) Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil 386, 385–394. doi: 10.1007/s11104-014-2270-y.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.