International Journal of Bioinformatics and Biomedical Engineering
Articles Information
International Journal of Bioinformatics and Biomedical Engineering, Vol.1, No.2, Sep. 2015, Pub. Date: Sep. 9, 2015
Structural Analysis and 3D-Modeling of FANCD2 Proteins
Pages: 205-210 Views: 2517 Downloads: 880
[01] Abubaker H. Mohamed, Department of Bioinformatics, Africa City of Technology, Khartoum, Sudan.
[02] AbdAlla A. AbdAlla, Department of Biotechnology, Omdurman Islamic University, Omdurman, Sudan.
[03] Abdalbasit Mariod, Department of Biology, Faculty of Sciences and Arts-Alkamil, Jeddah University, Alkamil, Saudi Arabia;Food Science & Technology Department, College of Agricultural Studies, Sudan University of Science & Technology, Khartoum North, Sudan.
Fanconi anemia (FA), is an uncommon inherited disease, is connected with dynamic bone marrow failure, inclination to cancer, and genomic instability. FA described by formative deformities, short stature, bone marrow failure, and a high danger of cancer. The mRNA of FANCD2 was recovered from the NCBI database, then interpreted into 679 amino acid by GeneMark server and study capacity of Fanconi anemia ID complex (FANCI-FANCD2) in light of the SWISSPORT Blast report: assumes a focal part in the repair of DNA interstrand cross-links, activated by means of DNA damage-induced phosphorylation by ATR and monoubiquitination by the FA center complex ubiquitin ligase, this capacity that permit processing and evacuation of crosslinked DNA and subsequently advances cell survival after DNA damage. The preservation homology was assessed by different arrangement utilizing BioEdit pakage, demonstrating high characters with another FANCD2 protein H. sapiens. The study structural and functional characterization, molecular formula, pI, EC, AI, GRAVY, instability index, half-life time and secondary structure were anticipated, this outcome affirm FANCD2 protein is steady, which can be utilized to confine and study in the vitro. In the present study a complete structural investigation and 3-D demonstrating of the FANCD2 protein utilized CPHmodels 3.2 server by utilizing template pdb of Mus musculus model because of the high rate of character (71.7%) and envision by Chimera 1.8. programming. Anticipated model was further surveyed by VERIFY-3D, this confirmation of quality of model.
Fanconi Anemia, Protein, 3-D Modeling, GeneMark Server, SWISSPORT Blast Report, Structural and Functional Characterization
[01] G. C. Bagby, J. M. Lipton, E. M. Sloand, C. A. Schiffer, Marrow failure, Hematology, (Am Soc Hematol Educ Program). 318–336 (2004).
[02] M. Buchwald and M. Carreau “Genetic basis of Fanconi anemia,” in Aplastic Anemia, H. Schrezenmeier and A. Bacigalupo, Eds., p. 403, Cambridge University Press, Cambridge UK, (1999).
[03] P. F. Giampietro, Verlander P. C., J. G. Davis, A. D. Auerbach “Diagnosis of Fanconi anemia in patients without congenital malformations: an international Fanconi anemia Registry Study,” American Journal of Medical Genetics. 68 (1): 58–61(1997).
[04] P. F. Giampietro, B. Adler-Brecher, P. C. Verlander, S. G. Pavlakis, J. G. Davis A. D. Auerbach. The need formore accurate and timely diagnosis in Fanconi anemia: a report from the international Fanconi anemia registry,” Pediatrics, 91(6):1116–1120 (1993).
[05] E. T. Tsilou, N. Giri, S. Weinstein, C. Mueller, S. A. Savage, B. P. Alter, Ocular and orbital manifestations of the inherited bone marrow failure syndromes: Fanconi anemia and dyskeratosis congenita,” Ophthalmology, 117, (3):615–622 (2010).
[06] M. J. Vale, M. J. Dinis, M. Bini-Antunes, B. Porto, J. Barbot, M. B. Coutinho Audiologic abnormalities of Fanconi anaemia, Acta Oto-laryngologica, 128( 9): 992–996 (2008).
[07] M. Tischkowitz and I. Dokal, Fanconi anaemia and leukaemia—clinical and molecular aspects, British Journal of Haematology, 126 (2): 176–191(2004).
[08] N. Sari, C. Akyuz, D. Aktas, Wilms tumor, AML and medulloblastoma in a child with cancer prone syndrome of total premature chromatid separation and Fanconi anemia,” Pediatric Blood and Cancer, 53(2): 208–210(2009).
[09] M. P Wajnrajch, J. M. Gertner, Z. Huma, Evaluation of growth and hormonal status in patients referred to the international Fanconi anemia registry, Pediatrics, 107(4 I): 744–754 (2001).
[10] N. Giri, D. L. Batista, B. P. Alter, C. A. Stratakis, Endocrine abnormalities in patients with Fanconi anemia, Journal of Clinical Endocrinology and Metabolism, 92( 7): 2624–2631(2007).
[11] H. Joenje, K.J. Patel, The emerging genetic and molecular basis of Fanconi anaemia. Nature Reviews Genetics. 2: 446–457(2001).
[12] S. Reid, D. Schindler, H. Hanenberg, K. Barker, S. Hanks, R. Kalb, K. Neveling, P. Kelly, S. Seal, M. Freund, Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nature Genetics, 39:162–164 (2007).
[13] B. Xia, J. C. Dorsman, N. Ameziane, Y. de Vries, M.A. Rooimans, Q. Sheng, G. Pals, A. Errami, E. Gluckman, J. Llera, Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nature Genetics, 39: 159–161(2007).
[14] O. Levran, C. Attwooll, R. T. Henry, K. L. Milton, K. Neveling, P. Rio, S.D. Batish, R. Kalb, E. Velleuer, S. Barral, The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nature Genetics, 37: 931–933(2005).
[15] A. R. Meetei, A. L. Medhurst, C. Ling, Y. Xue, T. R. Singh, P. Bier, J. Steltenpool, S. Stone, I. Dokal, C.G. Mathew, A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nature Genetics, 37:958–963(2005).
[16] M. Levitus, Q. Waisfisz, B.C. Godthelp, Y. de Vries, S. Hussain, W. W. Wiegant, E. Elghalbzouri-Maghrani, J. Steltenpool, M. A. Rooimans, G. Pals, The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nature Genetics, 37: 934–935(2005).
[17] A. R. Meetei, S. Sechi, M. Wallisch, D. Yang, M. K. Young, H. Joenje, M. E. Hoatlin, W. Wang, A multiprotein nuclear complex connects Fanconi anemia and Bloom syndrome. Molecular Cell Biology, 23: 3417–3426 (2003).
[18] I. Garcia-Higuera, T. Taniguchi, S. Ganesan, M. S. Meyn, C. Timmers, J. Hejna, M. Grompe, A. D. D’Andrea, Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway, Molecular Cell Biology, 7: 249–262(2001).
[19] T. Taniguchi, I. Garcia-Higuera, P. R. Andreassen, R. C. Gregory, M. Grompe, A. D. D’Andrea, S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood, 100: 2414–2420 (2002).
[20] L. H. Thompson, J. M. Hinz, N. A. Yamada, N. J. Jones, How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. Environmental and Molecular Mutagenesis, 45: 128–142(2005).
[21] K. Nakanishi, Y. G. Yang, A. J. Pierce, T. Taniguchi, M. Digweed, A. D. D’Andrea, Z. Q. Wang, M. Jasin, Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. PNAS, Proceedings of the National Academy of Sciences, 102: 1110–1115(2005).
[22] W. Niedzwiedz, G. Mosedale, M. Johnson, C. Y. Ong, P. Pace, K. J. Patel, The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Molecular Cell, 15: 607–620(2004).
[23] M. Digweed, S. Rothe, I. Demuth, R. Scholz, D. Schindler, M. Stumm, M. Grompe A. Jordan, K. Sperling, Attenuation of the formation of DNA-repair foci containing RAD51 in Fanconi anaemia. Carcinogenesis, 23 :1121–1126(2002).
[24] K. Yamamoto, S. Hirano, M. Ishiai, K. Morishima, H. Kitao, K. Namikoshi, M. Kimura, N. Arakawa, J. M. Buerstedde, K. Komatsu, L. H. Thompson, M. Takata, Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Molecular Cell Biology, 25: 34–43(2005).
[25] K. D. Mirchandani, A. D. D’Andrea. The Fanconi anemia/ BRCA pathway: a coordinator of cross-link repair. Experimental Cell Research. 312: 2647–2653(2006).
[26] M. Levitus, H. Joenje, J.P. deWinter. The Fanconi anemia pathway of genomic maintenance, Cell Oncology, 28: 3–29 (2006).
[27] retrieved on 12.07.2014
[28] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Research, 25: 3389-3402 (1997).
[29] S. F. Altschul, J. C. Wootton, E. M. Gertz, R. Agarwala, A. Morgulis, A. A. Schäffer, Y-K. Yu "Protein database searches using compositionally adjusted substitution matrices", Federation of European Biochemical Societies (FEBS), 272: 5101-5109, (2005).
[30] T. Hall, BioEdit: a user - friendly biological sequence alignment editor and analysis program for windows 95/98/NT, Nucleic Acids Symposium. 41: 95-98, (1999).
[31] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M.R. Wilkins, R.D. Appel, A. Bairoch, Protein Identification and Analysis Tools on the ExPASy Server. The proteomics Protocols Handbook, Human Press, 571-607, (2005).
[32] C. Geourjon, and G. Deléage, SOPMA: Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences (Cabios.) 11, 681-684. (1995).
[33] M. Nielsen, C. Lundegaard, O. Lund, T.N. Petersen, CPHmodels-3.0 - Remote homology modeling using structure guided sequence profiles, Nucleic Acids Research, 38, doi:10.1093/nar/gkq535. (2010).
[34] O. Lund, M. Nielsen, C. Lundegaard, P. Worning. CPHmodels 2.0: X3M a Computer Program to Extract 3D Models, Abstract at the CASP5 conferenceA102, (2002).
[35] E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C Meng, T. E. Ferrin, UCSF Chimera--a visualization system for exploratory research and analysis. Journal of Computing Chemistry, 25(13): 1605-12. (2004).
[36] D. Eisenberg, R. Luthy, J. U. Bowie, VERIFY3D: assessment of protein models with three dimensional profiles, Methods in Enzymology, 277: 396‐404 (1997).
[37] retrieved on 15.07.2014.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.