International Journal of Bioinformatics and Biomedical Engineering
Articles Information
International Journal of Bioinformatics and Biomedical Engineering, Vol.3, No.4, Jul. 2017, Pub. Date: Dec. 9, 2017
Optogenetics: A Cellular Photoactivation Method and Its Applications in Biomedical Sciences
Pages: 27-35 Views: 934 Downloads: 815
Authors
[01] Mustafa Qasim, Department of Health Sciences, Stratford University, Virginia, USA; Deptment of Microbiology, Howard University, Washington DC, USA.
[02] Denver Jn Baptiste, Department of Biology, Howard University, Washington DC, USA.
[03] Hemayet Ullah, Department of Biology, Howard University, Washington DC, USA.
Abstract
In contrast to the classical activation by microelectrodes, Optogenetics uses light to control ion movement in a more robust manner across the membrane of an engineered cell, alternating the cells function in a desired manner. This review identifies optogenetics, the cascade of events that leads to alternating ion movement, and factors that influence microbial opsins protein function. It discusses factors needed to be considered for an application of optogenetics as a tool and the wavelength of light required to induce retinal isomerization on each type of opsin proteins that leads to photoactivation. Understanding the architecture of opsin proteins is critical in understanding the mechanism by which it transports individual ions. Therefore, in this article, it was necessary to focus on simplifying and explaining the crystal structure of the most common types of opsins (channelrhodopsin, halorhodopsin, and opsin-GPCR), and to explain the changes in protein structure and functional behavior when photo-excitation and inhibition takes place.
Keywords
Optogenetics, Channelrhodopsin, Opsin, GPCR, Cell Signaling, Photo-Activation, Ion Movement
References
[01] Deisseroth, K. (2011). Optogenetics. Nature Methods, 8 (1): 26-29.
[02] Taslimi, A., et al. (2014). An optimized optogenetic clustering tool for probing protein interaction and function. Nature communications, 5, 4925.
[03] Bernstein, J. G., and Boyden, E. S. (2011). Optogenetic tools for analyzing the neural circuits of behavior. Trends in Cognitive Sciences, 15 (12), 592-600.
[04] Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature neuroscience, 8 (9), 1263-1268.
[05] Deisseroth, K. (2015). Optogenetics: 10 years of microbial opsins in neuroscience. Nature neuroscience, 18 (9), 1213-1225.
[06] Knöpfel, T., & Boyden, E. (2012). A comprehensive concept of optogenetics. Optogenetics: Tools for Controlling and Monitoring Neuronal Activity, 196, 1.
[07] Bartl, F. J., Ritter, E., & Hofmann, K. P. (2001). Signaling States of Rhodopsin Absorption Of Light In Active Metarhodopsin Ii Generates An All-Trans-Retinal Bound Inactive State. Journal of Biological Chemistry, 276 (32), 30161-30166.
[08] Hegemann, P., and Nagel, G. (2013). From channelrhodopsins to optogenetics. EMBO Molecular Medicine, 5, 173-176.
[09] Bernstein, J. G., Garrity, P. A., & Boyden, E. S. (2012). Optogenetics and thermogenetics: technologies for controlling the activity of targeted cells within intact neural circuits. Current opinion in neurobiology, 22 (1), 61-71.
[10] Zhou, X. X., Pan, M., & Lin, M. Z. (2014). Investigating neuronal function with optically controllable proteins. Frontiers in molecular neuroscience, 8, 37-37.
[11] Kianianmomeni, A. et al. (2009). Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature, and sex inducer. Plant physiology. Vol. 151, 347-366.
[12] Hutson, M. S., Shilov, S. V., Krebs, R., & Braiman, M. S. (2001). Halide dependence of the halorhodopsin photocycle as measured by time-resolved infrared spectra. Biophysical journal, 80 (3), 1452-1465.
[13] Ballesteros, J., & Palczewski, K. (2001). G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin. Current opinion in drug discovery & development, 4 (5), 561.
[14] Beiert, T., Bruegmann, T., Fleischmann, B. K., & Sasse, P. (2013). Optogenetic Gq Signaling in Cardiomyocytes. Biophysical Journal, 104 (2), 678a.
[15] Rein, M. L., and Deussing, M. J. (2012). The optogenetic (r)evolution. Molecular Genetics and Genomics, 287: 95-109.
[16] Kushibiki, T., Okawa, S., Hirasawa, T., & Ishihara, M. (2014). Optogenetics: novel tools for controlling mammalian cell functions with light. International Journal of Photoenergy, 2014.
[17] Britt, J. P., McDevitt, R. A., and Bonci, A. (2012). Use of channelrhodopsin for activation of CNS neurons. Current Protocols in Neuroscience, chapter, unit 2, 16.
[18] Allen, B. D., Singer, A. C., and Boyden, E. S. (2015). Principles of designing interpretable optogenetic behavior experiments. Learning and Memory, 22 (4): 232-238.
[19] Parker, et al. (2016). Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease. Dialogues in Clinical Neuroscience, vol. 18, no. 1.
[20] Packer, A. M., Roska, B., & Häusser, M. (2013). Targeting neurons and photons for optogenetics. Nature neuroscience, 16 (7), 805-815.
[21] Tye, K. M., and Deisseroth, K. (2012). Optogenetic investigation of neural circuits underlying brain disease in animal models. Nature Reviews Neuroscience, 13 (4): 251-266.
[22] Zhang, K., & Cui, B. (2015). Optogenetic control of intracellular signaling pathways. Trends in biotechnology, 33 (2), 92-100.
[23] Nagaraj, S., Mills, E., Wong, S. S., & Truong, K. (2012). Programming membrane fusion and subsequent apoptosis into mammalian cells. ACS synthetic biology, 2 (4), 173-179.
[24] Lee, S., Park, H., Kyung, T., Kim, N. Y., Kim, S., Kim, J., & Do Heo, W. (2014). Reversible protein inactivation by optogenetic trapping in cells. Nature methods, 11 (6), 633-636.
[25] Jang, G. F., et al. (2001). Mechanism of rhodopsin activation as examined with ring-constrained retinal analogs and the crystal structure of the ground state protein. Journal of Biological Chemistry, 276 (28), 26148-26153.
[26] Kato, H. E., et al. (2012). Crystal structure of the channelrhodopsin light-gated cation channel. Nature, 482 (7385), 369-374.
[27] Kikukawa, T., et al. (2015). Probing the Cl−-pumping photocycle of pharaonis halorhodopsin: Examinations with bacterioruberin, an intrinsic dye, and membrane potential-induced modulation of the photocycle. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1847 (8), 748-758.
[28] Lobo, M. K., Nestler, E. J., & Covington, H. E. (2012). Potential utility of optogenetics in the study of depression. Biological psychiatry, 71 (12), 1068-1074.
[29] Yizhar, O., Fenno, L., Zhang, F., Hegemann, P., & Diesseroth, K. (2011). Microbial opsins: a family of single-component tools for optical control of neural activity. Cold Spring Harbor Protocols, 2011 (3), top 102.
[30] Kouyama, T., Kanada, S., Takeguchi, Y., Narusawa, A., Murakami, M., & Ihara, K. (2010). Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. Journal of molecular biology, 396 (3), 564-579.
[31] Kouyama, T., Kawaguchi, H., Nakanishi, T., Kubo, H., & Murakami, M. (2015). Crystal Structures of the L 1, L 2, N, and O States of pharaonis Halorhodopsin. Biophysical journal, 108 (11), 2680-2690.
[32] Kühlbrandt, W. (2000). Bacteriorhodopsin—the movie. Nature, 406 (6796), 569-570.
[33] Song, Y., & Gunner, M. R. (2014). Halorhodopsin pumps Cl–and bacteriorhodopsin pumps protons by a common mechanism that uses conserved electrostatic interactions. Proceedings of the National Academy of Sciences, 111 (46), 16377-16382.
[34] Pama, E. A., Colzato, L. S., & Hommel, B. (2013). Optogenetics as a neuromodulation tool in cognitive neuroscience. Frontiers in psychology, 4, 610.
[35] Palczewski, K. (2006). G protein–coupled receptor rhodopsin. Annu. Rev. Biochem., 75, 743-767.
[36] Stenkamp, R. E., Filipek, S., Driessen, C. A. G. G., Teller, D. C., & Palczewski, K. (2002). Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1565 (2), 168-182.
[37] Rose, A. S., Bradley, A. R., Valasatava, Y., Duarte, J. M., Prlić, A., & Rose, P. W. (2016, July). Web-based molecular graphics for large complexes. In Proceedings of the 21st International Conference on Web3D Technology (pp. 185-186). ACM.
[38] Rose, A. S., & Hildebrand, P. W. (2015). NGL Viewer: a web application for molecular visualization. Nucleic acids research, gkv402.
[39] Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea, D. J. & Stehfest, K. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477 (7363), 171-178.
[40] Johansen, J. P., Wolff, S. B., Lüthi, A., & LeDoux, J. E. (2012). Controlling the elements: an optogenetic approach to understanding the neural circuits of fear. Biological psychiatry, 71 (12), 1053-1060.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.