International Journal of Chemical and Biomolecular Science
Articles Information
International Journal of Chemical and Biomolecular Science, Vol.4, No.4, Dec. 2018, Pub. Date: Dec. 6, 2018
Advances in Industrial Biofilm Control with Nanotechnology - A Review
Pages: 41-59 Views: 260 Downloads: 312
[01] Obi Clifford Nkemnaso, Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria.
[02] Iheduru Kingsley Chibueze, Department of Microbiology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria.
Biofilm is an assemblage of microbial cells that are irreversibly associated with a surface and enclosed in a matrix of primary polysaccharide material. It is not removed by gentle rinsing. In industrial systems, biofilms frequently grow on cooling water tubes and heat exchanger channels. They cause increased pressure drop and reduced heat transfer efficiency which ultimately lead to an increase in costs of production and maintenance, as well as to public health concerns and environmental impacts. Nanotechnology which involves the science of manipulating materials on an atomic, molecular and macromolecular scale has proven to be an advance in the control of industrial biofilms due to the resistance of industrial biofilms to biocides. This method has been successful due to the unique interaction of nanoparticles with biological systems making these biofilms susceptible to these nanoparticles therefore destroying them indefinitely. The increase in costs of operation in industries have brought about recent advancements in industrial biofilm control which has identified nanotechnological approaches as potential tools in eradicating industrial biofilms. The inability of nanoparticles to produce disinfectant by-products is an advantage of nanotechnological approaches over the use of biocides to tackle industrial biofilms. Further studies on nanotechnological methods of controlling biofilms are being developed and so far have proved very effective in the control of industrial biofilms.
Biofilm, Control, Industry, Microorganisms, Nanotechnology
[01] Meyer, R. L. (2015). Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front. Microbiol. 6: 841.
[02] Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., and Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575.
[03] Lourenço, A., Rego, F., Brito, Frank, J. (2012). Evaluation of Methods to Assess the BiofilmForming Ability of Listeria Monocytogenes. Journal of Food Protection, 759 (80): 1411-1417.
[04] Verghese, B., Lok, M., Wen, J., Alessandria, V., Chen, Y., Kathariou, S. and Knabel, S. (2011). ComK Prophage Junction Fragments as Markers for Listeria Monocytogenes Genotypes Unique to Individual Meat and Poultry Processing Plants and a Model for Rapid Niche Specific Adaptation in Biofilm Formation and Persistence. Applied Environmental Microbiology, 77: 3279–3292.
[05] Anderson, J. M., Lin, Y., Gillman, A. N., Parks, P. J., Schlievert, P. M., Peterson, M. L. (2012). Alpha-Toxin Promotes Staphylococcus aureus Mucosal Biofilm Formation. Front Cell Infection Microbiology, 2: 64–69.
[06] Ferreira, C., Pereira, A. M., Melo, L. F. and Simoes, M. (2010). Advances in Biofilm Control with Micro-Nanotechnology. Journal of Bioadhesion and Bioflm Research, 26 (2): 205 212.
[07] Ozlem, N. and Yurudu, S. (2013). A Short Methodology Review; for the Evaluation of Biocides Against Biofilms in Recirculating Water Systems. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. (Ed: Mendez-Vilas, A.). Formatex. pp 3-8.
[08] Camargo, A. C., Woodward, J. J., Call, D. R., and Nero, L. A. (2017). Listeria monocytogenes in food-processing facilities, food contamination, and human listeriosis: the Brazilian Scenario. Foodborne Pathog. Dis. 14, 623–636.
[09] Kooij, D. and Veenendaal, H. R. (2002). Biofilm Formation and Multiplication of Legionella on Synthetic Pipe Materials in Contact With Treated Water under Static and Dynamic Conditions. In Legionella (Eds: Marre, R., Kwaik, Y. A., Bartlett, C., Cianciotto, N. P, Fields, B. S., Frosch, M., Hacker, J. and Luck, P. S.). ASM Press, Washington DC. pp. 176-180.
[10] Melo, L. F. (2003). Biofilm Formation and its Role in Fixed Film Processes. In: The Handbook of Water and Wastewater Microbiology. Academic Press, London, UK. pp. 337-349.
[11] Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marĩas, B. J. and Mayes, A. M., (2008). Science and Technology for Water Purification in the Coming Decades. Nature, 452: 301-310.
[12] Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D. and Alvarez, P. J. J. (2008). Antimicrobial Nanomaterials for Water Disinfection and Microbial Control: Potential Applications and Implications. Water Reserves, 42: 4591-4602.
[13] Weir, E., Lawlor, A., Whelan, A. and Regan, F. (2008). The Use of Nanoparticles in Anti Microbial Materials and Their Characterization, Analyst, 133: 835-845. Taylor, E. N. and Webster, T. J. (2009). The Use of Superparamagnetic Nanoparticles forProsthetic Biofilm Prevention. International Journal of Nanomedicine, 4: 145-152.
[14] Zhang, L., Gu, F. X., Chan, J. M., Wang, A. Z., Langer, R. S. and Farokhzad, O. C. (2008). Nanoparticles in Medicine: Therapeutic Applications and Developments. Clinical and Pharmacological Therapy, 83: 761-769.
[15] Zhang, L., Pornpattananangkul, D., Hu, C. M. J. and Huang, C. M. (2010). Development of Nanoparticles for Antimicrobial Drug Delivery. Current Medical Chemistry, 17: 585-594.
[16] Watnick, P., Kolter, R. (2000). Biofilm, City of Microbes. Journal of Bacteriology, 182 (10): 2675–2679.
[17] Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases, 8: 881-890.
[18] Malhotra, V., Chandra, P. and Maurya, P. K. (2015). Control of Bacterial Biofilms in Industrial and Medical Settings. Green Earth Research Foundation Bulletin of Biosciences, 6 (1): 1-4.
[19] Epstein, A. K, Hochbaum, A. I., Kim, P. and Aizenberg, J. (2011). Control of Bacterial Biofilm Growth on Surfaces by Nanostructural Mechanics and Geometry. Nanotechnology, 22 (49): 22-30.
[20] Chaturongkasumrit, Y., Takahashi, H., Keeratipibul, S., Kuda, T., Kimura, B. (2011). The Effect of Polyesterurethane Belt Surface Roughness on Listeria Monocytogenes Biofilm Formation and its Cleaning Efficiency. Food Control, 22: 1893–1899.
[21] Chen, J. and Schluesener, L. W. T. (2008). Attachment of Bacterial Microbes to the Substrate, Surface Area. Food Science Technology, 40: 249–254.
[22] Oliveira, R., Azeredo, J. and Teixeira, P. (2003). The Importance of Physicochemical Properties in Biofilm Formation and Activity. In Biofilms in Wastewater Treatment: AnInterdisciplinary Approach. (Eds: Wuertz, S., Bishop, P. L., Wilderer, P. A.). IWAPublishing, London. pp. 211–231
[23] Flemming, H. C. and Wingender, J. (2010). The Biofilm Matrix. Nature Reviews, 8: 623–633.
[24] Stewart, P. S. and M. J. Franklin. (2008). Physiological Heterogeneity in Biofilms. Nature Reviews Microbiology, 6 (3): 199-210.
[25] Sousa, C., Botelho, C. and Oliveira, R. (2011). Nanotechnology Applied to Medical Biofilms Control. In Science Against Microbial Pathogens: Communicating Current Research andTechnological Advances. (Ed: Mendez-Villas, A.). Formatex. pp. 878-884.
[26] Donlan, R. M., Costerton, J. W. (2002). Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clinical Microbiology Review, 15: 167-193.
[27] Flemming, H. C. (2011). The Perfect Slime. Colloids Surf B Biointerfaces, 86: 251-259.
[28] Cloete, T. E. (2003). Resistance Mechanisms of Bacteria to Antimicrobial Compounds. International Biodeterioration and Biodegradation, 51: 277-282.
[29] Nebot, E., Casanueva, J. F., Casanueva, T. and Sales, D. (2007). Model For Fouling Deposition on Power Plant Steam Condensers Cooled with Seawater: Effect of Water Velocity and Tube Material. International Journal of Heat Mass Transfer, 50: 3351–3358.
[30] Rupp, C. J., Fux, C. A. and Stoodley, P. (2005). Viscoelasticity of Staphylococcus aureus Biofilms in Response to Fluid Shear Allows Resistance to Detachment and Facilitates Rolling Migration. Applied Environmental Microbiology, 71 (5): 2175–2178.
[31] Murthy, S. P. and Venkatesan, R. (2008). Industrial Biofilms and their Control. Springer Series on Biofilm, 10: 59-62.
[32] Davey, M. E. and O’Toole, G. (2000). Microbial Biofilms: From Ecology to Molecular Genetics. Microbiology and Molecular Biology Review, 64: 847-867.
[33] Flemming, H. C. (2002). Biofouling in Water Systems-Cases, Causes and Countermeasures. Applied Microbiology and Biotechnology, 59: 629-640.
[34] Chmielewsky, R. A. N. and Frank, J. F. (2003). Biofilm Formation and Control in Food Processing Facilities. Comprehensive Reviews in Food Science and Food Safety, 2 (1): 22-32.
[35] Keskinen, L. A., Todd, E. C. D. Ryser. E. (2008). Transfer of Surface Dried Listeria monocytogenes from Stainless Steel Knife Blades to Roast Turkey Breast. Journal of Food Protection, 71: 176 181.
[36] Vestby, L. K., Møretrø, T., Langsrud, S., Heir, E. and Nesse L. L. (2009). Biofilm Forming Abilities of Salmonella are Correlated With Persistence in Fish Meal and Feed Factories. BMC Veterinary Research, 5: 20.
[37] Simon, S., Trost, E., Bender, J., Fuchs, S., Malorny, B., Rabsch, W. (2018). Evaluation of WGS based approaches for investigating a food-borne outbreak caused by Salmonella enterica serovar Derby in Germany. Food Microbiol. 71, 46–54.
[38] Houdt R. V., Michiels C. W. (2005). Role of Bacterial Cell Surface Structures v in Escherichia coli Biofilm Formation. Research in Microbiology, 156: 626-633.
[39] Carter, M. Q., Louie, J. W., Feng, D., Zhong, W., and Brandl, M. T. (2016). Curli fimbriae are conditionally required in Escherichia coli O157: H7 for initial attachment and biofilm formation. Food Microbiol. 57, 81–89.
[40] Murphy, C., Carroll, C. and Jordan, K. N. (2006). Environmental Survival Mechanisms of the Food Borne Pathogen Campylobacter jejuni. Applied Microbiology, 100: 623-632.
[41] Saleh-Lakha, S., Leon-Velarde, C. G., Chen, S., Lee, S., Shannon, K., Fabri, M. (2017). A study to assess the numbers and prevalence of Bacillus cereus and its toxins in pasteurized fluid milk. J. Food Prot. 80, 1085–1089.
[42] Fields, B. S., Benson, R. F. and Besser, R. E. (2002). Legionella and Legionnaire Disease: 25 Years of Investigation. Clinical Microbiology Review, 15: 506–526.
[43] Kim, B. R., Anderson, J. E., Mueller, S. A., Gaines, W. A. and Kendall, A. M. (2002). Literature Review-Efficacy of Various Disinfectants Against Legionella in Water Systems. WaterReserves, 36: 4433–4444.
[44] Coester, S. E. and Cloete, T. E. (2005). Biofouling and Biocorrosion in Industrial Water Systems. Critical Reviews in Microbiology, 31: 213-232.
[45] Kochkodan, V. and Hilal, N. (2015). A Comprehensive Review on Surface Modified Polymer Membranes for Biofouling Mitigation. Desalination, 356: 187–207.
[46] Palmer, J., Flint, S. and Brooks, J. (2007). Bacterial Cell Attachment; the Beginning of a Biofilm. Journal of Industrial Microbiology and Biotechnology, 34: 577-588.
[47] Vu, B., Chen, M., Crawford, R. J. and Ivanova, E. P. (2009). Bacterial Extracellular Polysaccharides Involved in Biofilm Formation. Molecules, 14: 2535-2554.
[48] De Jong, P., Te Geffel, M. C and Kiezerbrink, E. A. (2002). Prediction of the adherence, Growth and Release of Microorganisms in Production chains. International Journal of Food Microbiology, 74: 13
[49] Timke, M. (2004). Analysis of Biofilm Communities in Breweries. (PHD). University Of Osnabruck.
[50] Storgards, E. and Priha, O. (2009). Biofilms and Brewing. In Biofilms in the Food and Beverage Industries. (Eds: Fratamico, P. M., Annous, B. A., Gunther, W.). Woodhead Publishing Limited, Cambridge, UK. p. 331.
[51] Kim, H., Ryu, J. H. and Beuchat, L. R. (2006). Attachment of and Biofilm Formation by Enterobacter sakazakii on Stainless Steel and Enteral Feeding Tubes. Applied Environmental Microbiology, 72: 5846–5856.
[52] Rode, T. M., Langsrud, S., Holck, A, Møretrø, T. (2007). Different Patterns of Biofilm Formation in Staphylococcus aureus Under Food-Related Stress Conditions. International Journal of Food Microbiology, 116: 372–383.
[53] Stepanović, S., Cirković, I., Mijac, V. and Svabic-Vlahovic, M. (2003). Influence of The Incubation Temperature, Atmosphere and Dynamic Conditions on Biofilm Formation by Salmonella spp. Food Microbiology, 20: 339–343.
[54] Winkelstroter, L. K., Texeira, B. F., Silva, E. P., Alves, F. V. and Pereira De Martins, C. E. (2013). Unraveling Microbial Biofilms of Importance for Food Microbiology. Microbial Ecology, 68: 35-46.
[55] Maukonen, J., Matto, J., Wirtanen, G., Raaska, L., Matila-Sandholm, T. and Saarela, Methodologies for the Characterization of Microbes in Industrial Environments: A Review. Journal of Industrial Microbiology and Biotechnology, 30: 327–356.
[56] Roco, M. C. (2003). Nanotechnology: Convergence with Modern Biology and Medicine. Current Opinion in Biotechnology, 14 (3): 337-346.
[57] Du, Y., Luo, X. L., Xu, J. J. and Chen, H. Y. (2007). A Simple Method to Fabricate a Chitosan Gold Nanoparticles Film and its Application in Glucose Biosensor. Bioelectrochemistry, 70 (2): 342-347.
[58] Ramasamy, M. and Lee, J. (2016). Recent Nanotechnology Approaches for Prevention and Treatment of Biofilm-Associated Infections on Medical Devices. Biomedical researchInternational, 16: 1-17.
[59] Morones, J. R., Elechiguerra, J. L., Camacho, A. (2005). The Bactericidal Effect of Silver Nanoparticles. Nanotechnology, 16 (10): 2346–2353.
[60] Rai, M., Yadav, A., Gade, A. (2009). Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnology Advancements, 27: 76-83.
[61] Gordon, O., Vig Slenters, T., Brunetto, P. S., Villaruz, A. E., Sturdevant, D. E., Otto, M., Landmann, R. and Fromm, K. M. (2010). Silver Coordination Polymers for Prevention of Implant Infection: Thiol Interaction, Impact on Respiratory Chain Enzymes and Hydroxyl Radical Induction. Antimicrobial Agents Chemother, 54: 4208-4218.
[62] Despax, B., Saulou, C., Raynaud, P., Datas, L., Mercier-Bonin, M. (2011). Transmission Electron Microscopy for Elucidating the Impact of Silver-Based Treatments (Ionic Silver Versus Nanosilver-Containing Coating) on The Model Yeast Saccharomyces cerevisiae. Nanotechnology, 22 (1); 75-101.
[63] Saulou, C., Jamme, F., Maranges, C., Fourquaux, I., Despax, B., Raynaud, P., Dumas, P. and Mercier-Bonin, M. (2010). Synchrotron FTIR Microspectroscopy of The Yeast Saccharomyces cerevisiae After Exposure to Plasma-Deposited Nanosilver- Containing Coating. Analytical and Bioanalytical Chemistry, 396: 1441-1450.
[64] Gogoi, S. K., Gopinath, P., Paul, A., Ramesh, A., Ghosh, S. S. and Chattopadhyay, A. (2006). Green Fluorescent Protein-Expressing Escherichia coli as a Model System forInvestigating the Antimicrobial Activities of Silver Nanoparticles. Langmuir, 22: 93229328.
[65] Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P. and Dash, D. (2007). Characterization of Enhanced Antibacterial Effects of Novel Silver Nanoparticles. Nanotechnology, 18: 103-112.
[66] Chen, X., Schluesener, H. J. (2008). Nanosilver: a Nanoproduct in Medical Application. Toxicology Letters, 176: 1–12.
[67] Jones, N., Ray, B., Ranjit, K. T., and Manna, A. C., (2008). Antibacterial Activity Of Zno Nanoparticle Suspensions on a Broad Spectrum of Microorganisms, FEMS Microbiology Letters 279 (1): 71–76.
[68] Lee, J. H., Kim, Y. G., Cho, M. H. and Lee, J. (2014). ZnO Nanoparticles Inhibit Pseudomonas aeruginosa Biofilm Formation and Virulence Factor Production. Microbiological Research, 169 (12): 888–896.
[69] Naik, K., Chatterjee, A., Prakash, H., and Kowshik, M. (2013). Mesoporous TiO2 Nanoparticles Containing Ag Ion with Excellent Antimicrobial Activity at Remarkable Low Silver Concentrations. Journal of Biomedical Nanotechnology, 9 (4): 664–673.
[70] Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lu, X. and Jiang, X. (2012). The Molecular Mechanism of Action of Bactericidal Gold Nanoparticles on Escherichia coli. Biomaterials, 33: 2327–2333.
[71] Fisher, L. E., Hook A. L. and Ashraf, W. (2015). Biomaterial Modification of Urinary Catheters with Antimicrobials to Give Long Term Broad Spectrum Antibiofilm Activity. Journal of Controlled Release, 202: 57–64.
[72] Shi, Z., Neoh, K. G., Kang, E. T. and Wang, W. (2006). Antibacterial and Mechanical Properties of Bone Cement Impregnated with Chitosan Nanoparticles. Biomaterials, 27 (11): 2440– 2449.
[73] Nevius, B. A., Chen, Y. P., Ferry, J. L. and Decho, A. W. (2012). Surface Functionalization Effects on Uptake of Fluorescent Polystyrene Nanoparticles by Model Biofilms. Ecotoxicology, 21 (8): 2205–2213.
[74] Singh, R., Nadhe, S., Wadhwani, S., Shedbalkar, U. and Chopade, B. A. (2016). Nanoparticles for Control of Biofilms of Acinetobacter Species. Materials, 9 (383): 1-17.
[75] Ramalingam, K., Frohlich, N. C. and Lee V. A. (2013). Effect Of Nanoemulsion On Dental Unit Waterline Biofilm. Journal of Dental Sciences, 8 (3): 333–336.
[76] Johansson, E. M. V., Crusz, S. A., Kolomiets, E. (2008). Inhibition And Dispersion Of Pseudomonas aeruginosa Biofilms by Glycopeptide Dendrimers Targeting The Fucose Specific Lectin LecB. Chemistry and Biology, 15 (12): 1249–1257.
[77] Zhu, Y., Ramasamy, M. and Yi, D. K. (2014). Antibacterial Activity of Ordered Gold Nanorod Arrays. ACS Applied Materials and Interfaces, 6 (17): 15078–15
[78] Park, H.,. Park H. J. and Kim, J. A. (2011). Inactivation of Pseudomonas aeruginosa PA01 Biofilms by Hyperthermia Using Superparamagnetic Nanoparticles. Journal ofMicrobiological Methods. 84 (1): 41–45.
[79] Cloete, E. T., Kwaasteniet, M., Botes, M. and Lopez-Romero, M. J. (2010). Nanozymes forBiofilm Removal. In Nanotechnology in Water Treatment Applications. Caister Academic Press. pp. 196-198.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.