International Journal of Environmental Planning and Management
Articles Information
International Journal of Environmental Planning and Management, Vol.3, No.4, Aug. 2017, Pub. Date: Aug. 8, 2017
Essential Oils with Potential as Insecticidal Agents: A Review
Pages: 23-33 Views: 2153 Downloads: 2042
Authors
[01] Hussein A. H. Said-Al Ahl, Medicinal and Aromatic Plants Researches Department, National Research Centre, Giza, Egypt.
[02] Wafaa M. Hikal, Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Parasitology Lab., Water Pollution Researches Department, National Research Center, Giza, Egypt.
[03] Kirill G. Tkachenko, V. L. Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, Russia.
Abstract
Botanical pesticides/insecticides have a proven track record and long use as simple extractives for pest control reviewed, with an emphasis on natural products that have received regulatory approval. Public concern over use of synthetic insecticides is growing. So botanicals are now replacement by synthetics, the new environmental movement has provided a favourable environment for the rebirth of botanical insecticides. Essential oil products are natural compounds with insecticidal properties and their use in crop protection is as old as agricultural practice. essential oils may provide potential alternatives to currently used insect-control agents, however, essential oils have negative side effects, such as toxicity to humans and animals, environmental contamination, and toxicity to non-target insects have become apparent and interest in less hazardous alternatives of pest control is therefore being renewed. Plant species with known insecticidal actions are being promoted and research is being conducted to find new sources of botanical insecticides.
Keywords
Natural Products, Essential Oil, Insecticides
References
[01] Regnault-Roger C, Philogène BJR. (2008). Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharmac. Biol., 46:41–52.
[02] Regnault-Roger C, Philogène BJR, Vincent C. (2005). Biopesticides of plant origin. Lavoisier, Paris, p 313.
[03] Isman M. B, Machial CM. (2006). Pesticides based on plant essential oils: From traditional practiceto commercialization. In Rai M, Carpinella MC (eds.), Naturally Occurring Bioactive Compounds, Elsevier, BV, pp 29–44.
[04] KoulO, Dhaliwal GS, Marwaha SS, Arora JK. (2003). Future perspectives in biopesticides. InKoul O, Dhaliwal GS, Marwaha SS, Arora JK. (eds.), biopesticides and pest management, vol. 1, Campus Books International, New Delhi, pp. 386–388.
[05] Koul O. (2005). Insect antifeedants. CRC Press,
[06] Dhaliwal, G. S., Koul, O. (2007). Biopesticides and pest management: Conventional and biotechnological approaches. Kalyani Publishers, New Delhi,
[07] Angioni A, Barra A, Coroneo V, Dessi S, Cabras P. (2006). Chemical composition, seasonal variability and antifungal activity of Lavandula stoechas L. spp. stoechas essential oils from stem/ leaves and flowers. J. Agric. Food Chem., 54: 64-70.
[08] Isman MB, Machial C, Miresmailli S, Bainard L. (2007). Essential oil based pesticides: new insights from old chemistry. In: Ohkawa H, Miyagawa H, Lee P Eds. Pesticide Chemistry. Wiley-VCH, Weinheim, 201-209.
[09] Chaubey MK(2007). Insecticidal activity of Trachyspermum ammi (Umbelliferae), Anethum graveolens (Umbelliferae), and Nigella sativa (Ranunculaceae) against stored-product beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Afri. J. Agric. Res., 2:596-600.
[10] SithisutD, Fields PG, Chandrapathya A. (2011). Contact toxicity, feeding reduction and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. J. Stored Prod., 104:1445-54.
[11] Chaubey MK. (2008). Fumigant toxicity of essential oils from some common spices against pulse beetle Callosobruchus chinensis (Coleoptera: Bruchidae). J. Oleo Sci., 57:171-179.
[12] Sithisut D, Fields PG, Chandrapathya A (2011). Contact toxicity, feeding reduction and repellency of essentialoils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. J. Stored Prod., 104:1445-54.
[13] Rice PJ, Coats JR. (1994). Insecticidal properties of several monoterpenoids to the housefly (Diptera:Muscidae), red flour beetle (Coleoptera: Tenebrionidae) and southern corn root-worm (Coleoptera: Chrysomelidae). J. Econ. Entomol., 87:1172-1179.
[14] Don-Perdo KM. (1996). Investigation of single and joint fumigant insecticidal action of citrus peel oil components. Pest Sci., 46:79-84.
[15] Koshier EL, Sedy KA. (2001). Effect of plant volatiles on the feeding and oviposition of Thrips tabaci. In: Marullo, Kound, L. Eds. Thrips and Tospoviruses, CSIRO, Australia, pp. 185-187.
[16] Tripath AK, Prajapati V, Khanuja SPS, Kumar S. (2003). Effect of d-limonene on three stored-product beetles. J. Econ. Entomol., 96:990-995.
[17] Shaaya E, KostjukovskiM, Eilberg J, Sukprakarn C. (1997). Plant oils as fumigants and contact insecticides for the control of stored-product insects.J. Stored Prod. Res., 33:7-15.
[18] Lal S. (1988). Saving grain after harvest. In: The Hindu Survey of Indian Agriculture. Madras, 246-248.
[19] DanahayeEJ, Navarro S, Bell C, Jayes D, NoyasR, Phillips TW. (2004). Integrated pest management strategies used in stored grains in Brazil to manage phosphine resistance. Proceeding International conference controlled atmosphere and fumigation in stored product, Gold coast Australia. 8-13th August, 2007:293-300.
[20] Mondal K. (1994). Flour beetles Tribolium spp. (Coleoptera: Tenebrionidae) as pests and their control. Agric. Zool. Rev., 6: 95-119.
[21] De Lima CPF. (1979). The assessment of losses due to insects and rodents in maize stored for subsistence in Kenya. Tropic.Prod.Inform., 38:21-26.
[22] Bourne MC. (1977). Post harvest food losses-the neglected dimension in increasing the world food supply. Cornell International Agriculture Mimeograph, No.53.
[23] DARP. (2003). Database of arthropods resistant to pesticides, persistant pest management at Michigan State University.
[24] Benhalima H, Chaudhry MQ, Mills KA, Price NR. (2004). Phosphine resistance in stored-products insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res., 40:241-249.
[25] Islam MS, Talukdar FA. (2005). Toxic and residual effects of Azadirachta indica, Tagetes erecta and Cynodon dactylon extracts against Tribolium castaneum. J. Plant Disease Protect., 112:594-601.
[26] Jermannaud A. (1994). Field evaluation of a test kit for monitoring insecticide resistance in stored grain pest. In: Highley E, Wright EJ, Banks HJ, Champ BR(eds.). Stored-product protection, proceedings of the 6th International Working Conference on stored-product protection, 17-23 April 1994, Canberra, Australia. CAB International, Wallingford, UK, pp: 795-797.
[27] Shelton AM, Zhao JZ, Roush RT. (2002). Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Ann. Rev. Entomol., 47:845-88.
[28] Pereira SG, Sanaveerappanavar VT, Murthy MS. (2006). Geographical variation in the susceptibility of the diamondback moth Ptlutella xylostella L. to Bacillus thuringiensisproducts and acylurea compounds. Pest Manag., 15:26-26.
[29] Elzen GW, Hardee DD. (2003). United State Department of Agricultural-Agricultural Research on managing insect resistance to insecticides. Pest Manag. Sci., 59:770-776.
[30] WMO. (1991). Scientific assessment of ozone depletion: World Meteorological Organization Report No. 25, World Meteorological Organization of the United Nations, Geneva.
[31] Lu FC. (1995). A review of the acceptable daily intakes of pesticides assessed by the World Health Organization. Reg. Toxicol. Pharmacol., 21:351-364.
[32] UNEP. (2000). The montrealprotocol on substances that deplete the ozone layer. United Nations Environment Programme, Nairobi.
[33] Beckel H, Lorini I, LazzariSMN. (2002). Resistência de Oryzae philussurinamensis (L.) (Coleoptera: Silvanidae) ainseticidaspiretróides e organofosforadosusadosemtrigoarmazenado. In: Resumos e Atas do III SeminárioTécnico do Trigo/XVII Reunião da Comissão CentrosulBrasileira de Pesquisa de Trigo., pp. 44.
[34] Bakkali F, Averbeck S, Averbeck D, Idaomar M. (2008). Biological effects of essential oils-a review. Food Chem. Toxicol., 46:446-475.
[35] Tripathi AK, Upadhyay S, Bhuiyan M, Bhattacharya PR. (2009). A review on prospects of essential oils as biopesticides in insect pest management. J. Pharmacog. hytother., 1:52-63.
[36] Nerio LS, Olivero-Verbel J, Stashenko E. (2010). Repellent activity of essential oils: a review. Bioresour. Technol., 101:372-378.
[37] Chaubey MK. (2007). Insecticidal activity of Trachyspermum ammi(Umbelliferae), Anethum graveolens (Umbelliferae), and Nigella sativa (Ranunculaceae) against stored-product beetle TriboliumcastaneumHerbst (Coleoptera: Tenebrionidae). Afri. J. Agric. Res., 2:596-600.
[38] Chaubey MK. (2011). Fumigant toxicity of essential oils against rice weevil Sitophilus oryzae L. (Coleoptera: Curculionidae). J. Biol. Sci., 11:411-416.
[39] Koul O, SinghG, Singh R, Singh J(2007). Mortality and reproductive performance of Tribolium castaneum exposed to anethol vapours at high temperature. Biopest. Int., 3:126-137.
[40] Abdelgaleil SA, MohamedMI, Badawy M. E, El-Arami SA. (2009). Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae(L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol., 35:518-525.
[41] Caballero-Gallardo K, Olivero-Verbel J, Stashenko EE. (2011). Repellent activity of essential oils and some of their individual constituents against Tribolium castaneum Herbst. J. Agric. Food Chem., 59:1690-1696.
[42] Liu ZL, Chu SS, Jiang GH(2011). Insecticidal activity and composition of essential oil of Ostericumsieboldii(Apiaceae) against Sitophilus zeamais and Tribolium castaneum Rec. Nat. Prod., 5:74-81.
[43] Stefanazzi N, Teodoro S, Ferrero A. (2011). Composition and toxic, repellent and feeding deterrent activity of essential oils against the stored-grain pests Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae). Pest Manag. Sci., 67:639-646.
[44] Rosenthal GA, Janzen DH. (1979). Herbivores: their interaction with secondary plant metabolites. Academic Press, New York.
[45] Bell AE, Fellows LE, Simmonds SJ. (1990). Natural products from plants for the control of insect pests. In: Hodgson, E. and R. J. Kuhr (Eds.), safer insecticide development and use. Marcel Dekker, USA.
[46] Sahayaraj K, Paulraj MG. (2000). Impacts of some plant products on the behavioural bioassay of Tribolium castaneum Herbst in groundnut kernels. Int. ArachisNewslett., 2(5): 12-17.
[47] Berger A. (1994). Using natural pesticides: Current and future perspectives: A Report for the plant protection improvement programme in Botswana, Zambia and Tanzania. Department of Entomology, Swedish University of Agricultural Sciences, P. O. Box 7044 S-750 07 Uppsala, Sweden.
[48] Georghiou GP. (1986). The magnitude of the resistance problem. In Pesticide resistance, strategies and tactics for management. National Aacademy Press, Washington, D.C. pp. 11-44.
[49] WHO (1990). Public health impact of pesticides used in agriculture. World Health Organization, Geneva, Switzerland.
[50] Jacobson M. (1958). Insecticides from plants: a review of the literature, 1941 - 1953. USDA Agricultural Handbook no. 154.
[51] Jacobson M. (1975). Insecticides from plants: a review of the literature, 1953-1971. USDA Agricultural Handbook no. 461.
[52] Jacobson M, Crosby DG. (1971). Naturally occurring insecticides. Dekker Inc., New York.
[53] Grainge M, Ahmed S. (1988). Handbook of plants with pest-control properties. Resource systems institute, East-West center, Honolulu, Hawaii. John Wiley & Sons, New York.
[54] Philogène BJR, Regnault-Roger C, Vincent C. (2005) Botanicals: yesteday’s and today’s promises. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticides of plant origin. Lavoisier and Andover, UK, pp 1–15.
[55] Shepard H. (1951). The chemistry and action of insecticides. McGraw- Hill, New York, p 504.
[56] National Research Council(1992). Neem - a tree for solving global problems. National Academy Press, Washington.
[57] Schmutterer H, Ascher KRS, Rembold H. (1981). Natural pesticides from the neem tree (Azadirachta indica) Rottach-Egern Neem Conference, Deutsche Gesellschaftfür Technische Zusammenarbeit (GTZ), Eshborn, Germany.
[58] Schmutterer H, Ascher KRS. (1984). Natural pesticides from the neem tree (Azadirachta indica A. Juss) and other tropical plants. Proceedings of the second international neem conference, Rauischholzhausen, Germany, 25- 28 May, 1983. GTZ, Eschborn, Germany.
[59] Schmutterer H, Ascher KRS. (1987). Natural pesticides from the neem tree and other tropical plants. Proceedings from the third international neem conference, Nairobi, Kenya, 10-15 July 1986. GTZ, Eschborn, Germany.
[60] Whittaker RH, Feeny P. (1971). Allelochemicals: chemical interactions between species. Science, 171:757–770.
[61] PhilogèneBJR, ArnasonJT, Towers GHN, Abramowski Z, CamposF., Champagne D, McLachlan D. (1984). Berberine: a naturally occurring phototoxic alkaloid. J. Chem. Ecol., 10:115–123.
[62] Copping LG. (2001). The biopesticide manual, 2nd edn. British Crop Protection Council, Farnham, p 528.
[63] Koul O, Dhaliwal GS. (2001). Phytochemical biopesticides. Harwood Acad, Amster, p 223.
[64] Thacker JMR. (2002). An introduction to arthropod pest control. Cambridge University Press, Cambridge, p 343.
[65] Regnault-Roger C, Philogène BJR, Vincent C. (2005). Biopesticides of plant origin. Lavoisier, Paris, p 313.
[66] Alburo R, Olofson H. (1987). Agricultural history andthe use of botanical insecticidesin Argao, Cebu. Philipp. Quar. Cul. & Soc., 15:151–172.
[67] Quarles W. (1996). EPA exempts least-toxic pesticides. IPM Pract., 18:16–17.
[68] Thibout E, Lecomte C, Auger J. (1986) Substances soufrées des Allium etinsectes. Acta Bot. Gallica, 143:137–142.
[69] Thibout E, Auger J. (1997) Composéssoufrés des Allium etluttecontre les insectes. ActaBot. Gallica, 144:419–426.
[70] Auger J, Thibout E. (2002) Substances soufrées des Allium et des Crucifères et leurs potentialities phytosanitaires. In: Regnault-Roger C, Philogène BJR, Vincent C (eds) Biopesticidesd’OrigineVégétale. Lavoisier Tech & Doc, Paris, pp 77–95.
[71] Schmutterer H. (1990). Properties and potential of natural pesticides from the neem tree, Azadirachtaindica. Annu. Rev. Entomol., 35: 271-97.
[72] Downum KR, Romeo JT, Stafford HA. (1993). Phytochemical potential of tropical plants. Recent advances in phytochemistry, vol.27. Plenum Press, New York.
[73] Latum EBJ, Gerrits R. (1991). Bio-pesticides in developing countries. Prospects and research priorities. ACTS Press, African Centre for Technology Studies, Nairobi, Kenya and ACTS Biopolicy Institute, Maastricht, The Netherlands.
[74] Stoll G. (1988). Natural plant protection in the tropics. AGRECOL, Margraf Publishers Scientific Books, Weikersheim, Germany.
[75] Pillmoor JB, Wright K, Terry AS. (1993). Natural products as a source of agrochemicals and leads for chemical synthesis. Pestic. Sci.,39:131-140.
[76] Bazzoni E, Sanna-Passino G, MorettiMDL. (2002). Essential oils and other control techniques against stored product insects. In: Majumdar DK, Govil JN and Singh VK, eds., Recent Progress in Medicinal Plants, Vol. 8 Phytochem-istry and Pharmacology II.. Houston, TX: Sci Tech Pub-lishing LLC, 313-342.
[77] Bathal SS, Singh D, Dhillon RS. (1993). Effect of crude root oils of Inularacemosa and Saussurealappa on feeding, survival and development of Spodopteralitura (Lepi-doptera: Noctuidae) larvae. Eur. J. Entomol., 90(2):239-240.
[78] Park SJ, Lee SG, Shin SC, Lee BJ, Ahn YJ. (1997). Larvicidal and antifeeding activities of oriental medicinal plant ex-tracts against four species of forest insect pests. Appl. Entomol. Zool., 32(4):601-608.
[79] Larocque N, Vincent C, Belanger A, Bourassa JP. (1999). Effects of tansy essential oil from Tanacetum vulgare on biology of oblique-banded leafroller, Choristoneura rosaceana. J. Chem. Ecol., 25(6):1319-1330.
[80] Marimuth S, Gurusubramanian G, Krishna SS. (1997). Effect of exposure of eggs to vapours from essential oils on egg mortality, development and adult emergence in Eariasvittella (F.) (Lepidoptera: Noctuidae). Biol. Agric. Horti., 14(4):303-307.
[81] Naumann K, Isman MB. (1995). Evaluation of neem Azadirachta indica seed extracts and oils as oviposition deterrents to noctuid moths. Entomol. Experimental Appl., 76:115-120.
[82] Landolt PJ, Hofstetter RW, Biddick LL. (1999). Plant essen-tial oils as arrestants and repellents for neonate larvae of the codling moth (Lepidoptera, Tortricidae). Environ. Entomol., 28(6):954-960.
[83] Moretti, M. D. L., Peana, A. T., Franceschini, A., Carta, C. (1998). In vivo activity of Salvia officinalis oil against Botrytis cinerea. J. Essent. Oil Res., 10:157-160.
[84] Markus A. (1996). Advances in the technology of controlled-release pesticide formulations. In: Benita S, ed., drugs and the pharmaceutical sciences, Vol. 73, Microencap-sulation: Methods and Industrial Applications. New York, NY: Marcel Dekker; 1996:73-91.
[85] Kydonieus AF. (1980). Controlled release technologies: Methods, theory, and applications. Vols. 1 and 2. Boca Raton, FL: CRC Press.
[86] Moretti MDL, Sanna-Passino G, Demontis S, Bazzoni E. (2002). Essential oil formulations useful as a new tool for insect pest control AAPS. Pharm. Sci. Tech., 3 (2): 13.
[87] National Research Council, (1993). Vetiver G rass: A thin green line against erosion. National Academy Press, Washington, DC.
[88] Handerson G, LaineRA, HeumanDO, ChenF, Zhu BR. (2005a). Extracts of vetiver oil as repellents and toxicants to ants, ticks and cockroaches. U.S. Patent. No. 6.906,108B2.
[89] Ibrahim SA, Handa G, Laine RA. (2004). Toxicity and behavioural effects of nootkatone, 1-10 dihydronootkatone and tetrahydronootkatone on the Formosan subterranean termite (Isoptera: Rhynotermittidae). J. Eco. Entomol., 97(1): 102-111.
[90] Zhu B, HendersonG, ChenF, Maistrllo E, Zaine RA. (2001a). Nootkatone is a repellent for Formosan Subteranean termites (Coptotermes formosanus). J. Chem. Edu., 27(3): 523-531.
[91] Zhu B, Henderson G, Chen F, Maistrllo E, Zaine RA. (2001b). Evaluation of vetiver oil and seven insect-active essential oils against the Formosan subteranean termites. J. Chem. Ecol., 27(8): 1617-1625.
[92] Handerson G, LaineRA, HeumanDO, ChenF, Zhu, BR. (2005b). Vetiver oil extracts as termite repellent and toxicant U.S. Patent 6,890, 960B1.
[93] Sujatha S. (2010). Essential oil and its insecticidal activity of medicinal aromatic plant Vetiveria zizanioides (L.) against the red flour beetle Tribolium castaneum (Herbst). Asian Journal of Agricultural Sciences, 2(3): 84-88.
[94] BatishDR, SinghHP, Kohli RK, Kaur S. (2008). Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management, 256:2166–2174.
[95] Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A. (2005). Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J. Agric. Food Chem., 53: 1408–1416.
[96] Tripathi AK, PrajapatiV, Aggarwal KK, Kumar S, KukrejaAK, Dwivedi S, Singh AK. (2000). Effects of volatile oil constituents of Mentha species against stored grain pests, Callosobrunchus maculatus and Tribolium castaneum. J. Med. Arom. Plant Sci., 22: 549–556.
[97] MohanM, HaiderSZ, AndolaHC, Purohit VK. (2011). Essential oils as green pesticides: For sustainable agriculture. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2 (4):100-105.
[98] Chaubey MK. (2012). Responses of Tribolium castaneum (Coleoptera: Tenebrionidae) and Sitophilus oryzae (Coleoptera: Curculionidae) against essential oils and pure compounds. HerbaPolonica, 58 (3): 33-45.
[99] Langenheim JH. (1994). Higher plant terpenoids: A phytocentric overview of theirecological roles. J. Chem. Ecol., 20: 1223-1280.
[100] Tholl D. (2006). Terpene synthases and the regulation, diversity and biological rolesof terpene metabolism. Curr. Opin. Plant Biol., 9: 297–304.
[101] Theis N, Lerdau M. (2003). The evolution of function in plant secondary metabolites. Int. J. Plant Sci., 164 (3 Suppl.), S93–S102.
[102] Dorman HJD, Deans, SG. (2000). Antimicrobial agents from plants: anti-bacterialactivity of plant volatile oils. J. Appl. Microbiol., 88: 308–316.
[103] Isman MB, Machial CM. (2006). Pesticides based on plant essential oils: fromtraditional practice to commercialization. In: Rai, M., Carpinella, M. C. (Eds.), Naturally Occurring Bioactive Compounds. Advances in Phytomedicine, 3: 29–44.
[104] Bakkali F, Averbeck S, Averbeck D, Idaomar M. (2008). Biological effects ofessential oils-a review. Food Chem. Toxicol., 46: 446–475.
[105] Isman MB. (2000). Plant essential oils for pest and disease management. Crop Prot., 19: 603–608.
[106] Isman MB. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol., 51: 45–66.
[107] Batish DR, Setia N, Singh HP, Kohli RK. (2004). Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Prot., 23: 1209-1214.
[108] Batish DR, Singh, HP, Setia, N, Kohli RK, Kaur S, Yadav SS. (2007). Alternative control of littleseed canary grass using Eucalyptus oil. Agron. Sust. Dev., 27: 171–177.
[109] Singh HP, Batish DR, Kohli RK. (2003). Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Crit. Rev. Plant Sci., 22: 239–311.
[110] Pawar VC, Thaker VS (2006). In vitro efficacy of 75 essential oils against Aspergillus niger. Mycoses, 49: 316–323.
[111] Abad MJ, Ansuategui M, Bermejo P (2007). Active antifungal substances from natural sources. ARKIVOC (vii), 116-145.
[112] Zygadlo, JA, Grosso, NR. (1995). Comparative study of the antifungal activity ofessential oils from aromatic plants growing wild in the central region of Argentina. FlavourFrag., J. 10, 113-118.
[113] Misra G, Pavlostathis SG. (1997). Biodegradation kinetics of monoterpenes in liquid and in soil-slurry system. Appl. Microbiol. Biotechnol., 47: 572–577.
[114] Enan E, Beigler M, Kende A. (1998). Insecticidal action of terpenes and phenols to cockroaches: Effect on octopamine receptors. In: Proceedings of the International Symposium on Plant Protection, Gent, Belgium.
[115] Barton AFM. (2000). The oil mallee project, a multifaceted industrial ecology casestudy. J. Ind. Ecol., 3: 161–176.
[116] Brooker MIH, Kleinig DA. (2006). Field Guide to Eucalyptus. vol. 1. South-eastern Australia, 3rd edition. Bloomings, Melbourne.
[117] Vourc’h G, Russell J, Martin JL. (2002). Linking deer browsing and terpeneproduction among genetic identities in Chamaecyparisnootkatensis and Thujaplicata (Cupressaceae). J. Hered., 93: 370–376.
[118] Bailey JK, Schweitzer JA, Rehill BJ, Lindroth RL, Martinsen GD, Whitham TG. (2004). Beavers as molecular geneticists: a genetic basis to the foraging of an ecosystem engineer. Ecology, 85: 603–608.
[119] Foley WJ, Moore BD. (2005). Plant secondary metabolites and vertebrate herbivores from physiological regulation to ecosystem function. Curr. Opin. Plant Biol., 8: 430-435.
[120] Watanabe K, Shono Y, Kakimizu A, Okada A, Matsuo N, Satoh A, Nishimura H. (1993). New mosquito repellent from Eucalyptus camaldulensis. J. Agric. Food Chem., 41, 2164-2166.
[121] Li H, Madden JL, Potts BM. (1995). Variation in volatile leaf oils of the Tasmanian Eucalyptus species1. Subgenus Monocalyptus. Biochem. Syst. Ecol., 23: 299–318.
[122] Li H, Madden JL, Potts BM. (1996). Variation in volatile leaf oils of the Tasmanian Eucalyptus species II. Subgenus Symphyomyrtus. Biochem. Syst. Ecol., 24: 547–569.
[123] Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N, Totte´ J, Pieters L, Vlietinck AJ. (2002). Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. Ethnopharm., 79: 213–220.
[124] Duke JA. (2004). Dr. Duke’s Phytochemical and Ethnobotanical databases. Availableonline at http://www.ars-grin.gov/duke/ (accessed on 9 June, 2008).
[125] Liu X, Chen Q, Wang Z, Xie L, Xu Z. (2008). Allelopathic effects of essential oil from Eucalyptus grandisE. urophylla on pathogenic fungi and pest insects. Front. Forestry China, 3: 232-236.
[126] Su, YC, Ho, CL., Wang, IC., Chang, ST. (2006). Antifungal activities and chemical compositions of essential oils from leaves of four Eucalypts. Taiwan J. For. Sci.,21: 49–61.
[127] Batish DR, Singh HP, Setia N, Kaur S, Kohli RK (2006). Chemical composition and phytotoxicity of volatile essential oils from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. C., 61: 465–471.
[128] Yang YC, Choi HC, Choi WS, Clark JM, Ahn YJ. (2004). Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem., 52: 2507–2511.
[129] Ceferino TA, Julio Z, Mougabure CG, Fernando B, Eduardo Z, Maria IP. (2006). Fumigant and repellent properties of essential oils and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J. Med. Entomol., 43: 889–895.
[130] Trigg JK. (1996a). Evaluation of eucalyptus-based repellent against Anopheles spp. In Tanzania. J. Amer. Mosquito Cont. Assoc., 12: 243–246.
[131] Trigg JK. (1996b). Evaluation of eucalyptus-based repellent against Culicoides impunctatus (Diptera: Ceratopogonidae) in Scotland. J. Amer. Mosquito Cont. Assoc., 12: 329–330.
[132] Trigg JK, Hill N. (1996). Laboratory evaluation of a eucalyptus-based repellent against four biting arthropods. Phytother. Res., 10: 313–316.
[133] Thorsell W, Mikiver A, Malander I, Tunon H. (1998). Efficacy of plant extracts and oils as mosquito repellents. Phytomedicine, 5: 311–323.
[134] Fradin MS, Day JF. (2002). Comparative efficacy of insect repellents against mosquito bites. New England J. Med., 347:13–18.
[135] Lucia A, Audino PG, Seccacini E, Licastro S, Zerba E, Masuh H. (2007). Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc., 23:299–303.
[136] Seyoum, A, Killeen GF, Kabiru EW, Knols BGJ, Hassanali A. (2003). Field efficacy of thermally expelled or live potted repellent plants against African malaria vectors in western Kenya. Trop. Med. Int. Health, 8: 1005–1011.
[137] Kuehn BM. (2005). CDC: new repellents for West Nile fight. JAMA 293, 2583.
[138] Yatagai M. (1977). Miticidal activity of tree terpenes. Curr. Top. Phytochem., 1: 85–97.
[139] El-Zemity S, Hussien R, Saher F, Ahmed Z. (2006). Acaricidal activities of some essential oils and their monoterpenoidal constituents against house dust mite, Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Zhejiang Univ. Sci. B., 7: 957–962.
[140] Calderone NW, Spivak M. (1995). Plant extracts for control of the parasitic mite Varroajacobsoni (Acari: Varroidae) in colonies of the western honey bee (Hymenoptera: Apidae). J. Econ. Entomol., 88: 1211–1215.
[141] Choi W, Lee SG, Park HM, Ahn YJ. (2004). Toxicity of plant essential oils toTetranychus urticae (Acari: Tetranychidae) and Phytoseiuluspersimilis (Acari: Phytoseiidae). J. Econ. Ent., 97: 553-558.
[142] Chagas ACS, Passos WM, Prates HT, Leitem RC, Furlong J, Fortes ICP. (2002). Acaricide effect of Eucalyptus spp. essential oils and concentrated emulsion on Boophilus microplus. Braz. J. Vet. Res. Anim. Sci., 39: 247–253.
[143] GardulfA, Wohlfart I, Gustafson R. (2004). A prospective cross-over field trial shows protection of lemon Eucalyptus extract against tick bites. J. Med. Entomol., 41: 1064-1067.
[144] Irvine FR. (1955). West African insecticides, Colon. Pl. Anim. Prod., 5: 34-38.
[145] Chogo JB, Crank G. (1981). Chemical composition and biological activity of the Tanzanian plant Ocimum suave. J. Natural Products, 44: 308-311.
[146] Weaver DK, Dunkel FV, Ntezurubanza L, Jackson LL, Stock DT. (1991). The efficacy of linalool, a major component of freshly-milled Ocimum canum Sims (Lamiaceae), for protection against postharvest damage by certain stored product Coleoptera. J. Stored Products Research, 27: 213-220.
[147] Hassanali A, Lwande W. (1989). Antipest secondary metabolites from African plants. In Arnason JT, Philogene BJR Morand P (eds.) Insecticides of plant origin. ACS symposium series 387, pp. 78-96. American Chemical Society, Washington, D.C.
[148] Kanat M, Hakki Alma M. (2003). Insecticidal effects of essential oils fromvarious plants against larvae of pine processionary moth (Thaumetopoea pityocampa Schiff) (Lepidoptera: Thaumetopoeidae). Pest Manag. Sci., 60: 173-177.
[149] Ben Jemba JM, Tersim N, Toudert KT, Khouja ML. (2012). Insecticidalactivities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeriaand Morocco, and comparative chemical composition. Journal of StoredProducts Research, 48: 97–104.
[150] Papachristos DP, Karamanoli K, Stamopoulos DC, Menkissoglu-Spiroudi U. (2004). The relationship between the chemical composition of three essentialoils and their Insecticidal activity against Acanthoscelides obtectus (Say). Pest Manag. Sci., 60: 514–520.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.