International Journal of Environmental Planning and Management
Articles Information
International Journal of Environmental Planning and Management, Vol.1, No.1, Apr. 2015, Pub. Date: Apr. 2, 2015
Acute Toxicity of Some Heavy Metals to the Freshwater Amoebae Vahlkampfia ustina
Pages: 10-17 Views: 2586 Downloads: 1471
Authors
[01] Wafaa M. Hikal, Department of Biology, Faculty of Science, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia; Parasitology Laboratory, Water Pollution Research Department, National Research Centre,33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt.
[02] Ahmad Z. Al-Herrawy, Parasitology Laboratory, Water Pollution Research Department, National Research Centre,33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, Egypt.
[03] Ezzat S. El-Daly, Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, Egypt.
[04] Shehata E. Elowa, Department of Zoology and Entomology, Faculty of Science, Helwan University, Helwan, Egypt.
Abstract
In-vitro toxic effects of nickel (Ni), copper (Cu), cadmium (Cd), chromium III (Cr), iron (Fe), zinc (Zn), cobalt (Co) and arsenic (As) towards the freshwater amoebae Vahlkampfia ustina were studied. The maintained Vahlkampfia ustina amoebae were exposed to different concentrations (0.01, 0.1, 1, 3, 5, 7 and 9 mg/l) of the tested heavy metals for different contact times (1, 10, 24, 48, 72 and 96 h). The average median lethal concentrations (LC50) of nickel, copper, cadmium, chromium, iron, zinc, cobalt and arsenic on Vahlkampfia ustina amoebae were 4.9050, 1.0372, 3.3258, 2.6643, 0.6804, 5.7099, 7.8285 and 7.8487 mg/l, respectively. Statistically, the interaction between the tested heavy metals, used concentrations and different contact times had a significant toxic effect on Vahlkampfia ustina amoebae. In descending order, the highest lethal effects of tested heavy metals on Vahlkampfia ustina amoebae were as follows: Fe > Cu > Ni> Cd > Zn > Co > As.
Keywords
Toxicity, Heavy Metals, Freshwater Amoebae, Vahlkampfia ustina, LC50
References
[01] Aksoy, U.; Ustun, S.; Dagci, H. and Yazar, S. (2004): Effects of Cd+2, Cu+2, Ba+2, and Co+2 ions against Entamoeba histolytica cysts. World J. Gastroenterol., 10: 449-451.
[02] Al-Herrawy A., Bahgat M., Mohammed A., Ashour A., Hikal W. (2013). Morpho-Physiological and Biochemical Criteria of Acanthamoeba spp. Isolated from the Egyptian Aquatic Environment. Iranian J Parasitol. 8 (2): 302-312.
[03] Al-Herrawy A., Bahgat M., Mohammed A., Ashour A., Hikal W. (2014). Acanthamoeba species in Swimming Pools of Cairo, Egypt. Iranian J Parasitol. 9 (2): 194-201.
[04] Al-Herrawy AZ, and Hikal WM (2005). Impact of heavy metals on survival of the freshwater amoebae Vahlkampfia ustina in vitro, Egypt. Med. J. Toxicol. Environ. Dis., 1: 71-78.
[05] Allen P, (1995). Accumulation profiles of lead and cadmium in the edible tissue of Oreochromis aurous during acute exposure. J .Fish Biol., 47: 559-597.
[06] American Public Health Association (1998): Standard methods for the examination of water and wastewater. 20th ed., APHA, AWWA, WEF., Washington, DC.
[07] Anderson, O. R. (2000). Abundance of terrestrial Gymnamoebae at a Northeastern U.S. site: a four-year study, including the El Nino winter of 1997-1998. J. Eukaryot. Microbiol., 47: 148-155.
[08] Al-Rasheid, K. A. S. and Sleigh, M. A. (1994): The effects of heavy metals on the feeding rate of Euplotes mutabilis (Tuffrau 1960). Eur. J. Parasitol., 30: 270-279.
[09] Barnhart, J. (1997). Chromium chemistry and implications for environmental fate and toxicity. J. Soil Contam., 5: 379-383.
[10] Bartell, S. M.; G. H. Gardner and R. V. O'Neill (1992). Ecological risk estimation, Lewis publishers, Boca Raton.
[11] Blanck, H.; Holmgren, K.; Lander, L.; Norin, H.; Notini, M.; Rosemarin, A. and Sundelin, B. (1989): Advanced hazard assessment of arsenic in the Swedish environment. In Lander, L. (ed), chemicals in the aquatic environment, advanced hazard assessment, Springr Verlag, Berlin, p 256.
[12] Bogaerts, P.; Bohatier, J. and Bonnemoy, F. (2001): Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure-activity relationships of xenobiotics: comparison with microtox test. Ecotoxicol. Environ. Saf., 49: 293-2001.
[13] Cairns, Jr.; Hart, K. M. and Henebry, M. S. (1980): The effects of a sub lethal dose of copper sulfate on the colonization rate of freshwater protozoan communities. Amer. Midland Naturalist., 104: 93-101.
[14] Caussy, D.; M. Gochfeld; E. Gurzau; C. Neagu and H. Ruedel. (2003). Lessons from case studies of metals: investigating exposure, bioavilability, and risk. Ecotoxicol. Environ. Saf., 56: 45-51.
[15] Crompton, T. R. (1997). Toxicants in the aqueous ecosystem. John Wiley and Sons, Chicester.
[16] De Jonckheere, j. F.; P. Van Dijk and, H. V. De Voord (1974). Evaluation of the indirect fluorescent antibody technique for identification of Naegleria species., Appl. Microbiol., 28: 159-164.
[17] Dojlido, J. R. and G. A. Best (1993). Chemistry of water pollution control. Ellis Harwood, New York.
[18] Dunnick, J. K.; Elwell, M. R.; Radwsky, A. E.; Benson, J. M.; Hahn, F. F.; Barr, E. B. and Hobbs, C. H. (1995): Comparative carcinogenic effects of nickel subslufide, nickel oxide, or nickel hexa-hydrate chronic exposure in the lung. Cancer Res., 55: 5251-5256.
[19] Fernandez-Leborans, G. and Y.O. Herrero (2000). Toxicity and bioaccumulation of lead and cadmium in marine protozoa communities. Ecotoxicol. Environ. Saf., 47: 266-276.
[20] Hayes, R. B. (1997). The carcinogenicity of metals in humans. Cancer Cause Control, 8: 371-385.
[21] Hikal, (2005). Freshwater Amoebae as a Biological Indicator for Some Environmental Chemical Pollutants. M.Sc. thesis, Fac. Sci.., Helwan University, Egypt.
[22] James, B. R. (1996). The challenge of remediating chromium-contaminated soil. Environ Sci Technol., 30: 248-251.
[23] Larsen, J. and J. R. Nilsson (1983). Effects of nickel on the rates of endocytosis, motility, and determinations on the cell content of the metal. Protoplasma, 118: 140-147.
[24] Leita, L.; M. Denobili; G. Muhlbachova; C. Mondini; L. Marchio and G. Zerbi (1995). Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biol. Fertil. Soils, 19: 103-108.
[25] Lester J. N. (1983): Significance and behaviour of heavy metals in wastewater treatment processes. Ι. Sewage treatment and effluent discharge. Sci. Total Environ., 30: 1-44.
[26] Madoni, P. (2000): The acute toxicity of nickel to freshwater ciliates. Environ. Poll., 54: 87-91.
[27] Madoni, P.; D. Davoli; G. Gorbi and L. Vescovi (1996). Toxic effects of heavy metals on the activated sludge protozoan community. Wat. Res., 30: 135-141.
[28] Moore, J. M. and S. Ramamoorthy (1984). Heavy metals in natural waters. Springer Verlag, New York.
[29] Morgan, G. B. and J. B. Lackey (1958). BOD determinations in wastes containing chelated copper and chromium. Sewage Industrial Wastes, 30: 283-286.
[30] National Toxicology Program. (1991). Six annual reports on carcinogens: summary. Research Tringle Park, NC: US Department of Health and Human Services.
[31] Nicolau, A.; Mota, M. and Lima, N. (1999): Physiological responses of Tetrahymena pyriformis to copper, zinc, cycloheximide and triton X-100. FEMS Microbiol. Ecol., 30: 209-216.
[32] Nicolau, A.; Mota, M. and Lima, N. (2004): Effect of different toxic compound on ATP content and acid phoshatase activity in axenic cultures of Tetrahymena pyriformis. Ecotoxicol. Environ. Saf., 57: 129-135.
[33] Page, F.C. (1988). A new key to freshwater and soil Gymnamoebae. Freshwater Biol. Ass., Ambleside.
[34] Phillips, D. J. H. (1990). Arsenic in aquatic organisms: a review, emphasizing chemical speciation. Aquatic Toxicol. 16: 151-186.
[35] Pussard, M. and Pons, R. (1977): Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (protozoa, amoebida). Protistol., TXIII: 557-598.
[36] Riley, R. G.; J. M. Zachara and F. J. Wobber (1992). Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. Washington, DC: U. S. Department of Energy. P ii-77.
[37] Rogerson, A. and D. J. Patterson (2000). The naked ramicristate amoebae (Gymnamoebae) in: An illustrated guide to the protozoa, 2nd edition (Eds. Lee J.J., Leedale, G.F. and Bradbury P.). Society of Protozoologists, Lawrence, Kansas. pp. 1023-1053.
[38] Snedcor, G. W. and W.G. Cochran (1990). Statistical Methods, 9th edition. Iowa State University Press, Iowa, USA.
[39] Snodgrass, W. J. (1980): Distribution and behavior of nickel in the aquatic environment. In: Nriagu, J. O. (Ed.), Nickel in the environment. Wiley, New York, pp. 203-274.
[40] Tisler, T. and J. Zagorc-Koncan (2002). Acute and chronic toxicity of arsenic to some aquatic organisms. Bull. Environ. Contam. Toxicol., 69: 421-429.
[41] Waller, A. and D. B. Duncan (1969). Multiple range and multiple test. Biometries, 11: 1-24.
[42] Walochnik, J.; M. Duchene; K. Seifert; A. Obwaller; T. Hottkowitz; G. Wiedermann; H. Eibl and H. Aspock (2002). Cytotoxic activities of alkylphosphocholines aginst clinical isolates of Acanthamoeba spp. Antimicrob. Agent. Chemoth., 46: 695-701.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.