International Journal of Life Science and Engineering
Articles Information
International Journal of Life Science and Engineering, Vol.3, No.2, Jun. 2018, Pub. Date: Jun. 6, 2018
Isolation of Antibiotic Resistant Bacteria from Makelele River (Kinshasa, DR Congo) and Their Susceptibility Towards Plant-Derived Silver Nanoparticles
Pages: 25-38 Views: 501 Downloads: 197
[01] Koto-te-Nyiwa Ngbolua, Department of Biology, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo; Department of Environmental Sciences, University of Gbadolite, Nord-Ubangi City, Democratic Republic of the Congo; Higher Pedagogical Institute of Abumombazi, Nord Ubangi City, Democratic Republic of the Congo.
[02] Gédéon Bongo, Department of Biology, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[03] Beaudrique Nsimba, Department of Chemistry, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[04] Emmanuel Lengbiye, Department of Biology, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[05] Jeff Iteku, Department of Biology, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[06] Pitchouna Kilunga, Department of Chemistry, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[07] Goslin Gafuene, Department of Biology, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[08] Colette Masengo Ashande, Department of Environmental Sciences, University of Gbadolite, Nord-Ubangi City, Democratic Republic of the Congo; Higher Pedagogical Institute of Abumombazi, Nord Ubangi City, Democratic Republic of the Congo.
[09] Tshiama Claudine, Department of Teaching and Administration in Nursing Care, Higher Institute of Medical Techniques, Kinshasa City, Democratic Republic of the Congo.
[10] Kongo Nzapo, Nursing Sciences, Red Cross Health Sciences Higher Institute, Kinshasa City, Democratic Republic of the Congo.
[11] Clément Inkoto, Department of Biology, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[12] Crispin Mulaji, Department of Chemistry, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[13] Nadège Ngombe, Pharmaceutical Sciences Faculty, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[14] Théophile Mbemba, Department of Biology, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
[15] Pius Mpiana, Department of Chemistry, University of Kinshasa, Kinshasa City, Democratic Republic of the Congo.
In Kinshasa city, Democratic Republic of the Congo (DRC) Rivers are highly affected by pollution mainly due to the discharge of garbage, domestic and industrial wastes without any prior treatment. The problem of waste management is a serious issue in this city. The main objective of the current research was to assess the antimicrobial activity of silver nanoparticles vis-à-vis certain bacteria indicative of faecal pollution from Makelele River. The preliminary characterization of silver nanoparticles was carried out using UV-visible spectrophotometer. Noble metals, such as silver nanoparticles, exhibit unique and adjustable optical properties due to their external plasmon resonance and the reduction of silver ions was monitored. The antibiotic susceptibility test results confirmed the inactivity of these antibiotics tested against the wild strain of E. coli and Enterococcus sp. The synthesized silver nanoparticles displayed a good antibacterial activity against Enterococcus sp. This synthesis is designed to bypass the situation of drug resistance and these results provide strong evidence that silver nanoparticles can be used to fight against antibiotic-resistant bacteria.
Antibiotic Resistant Bacteria, Green Chemistry, Surface Water, Metallic Trace Elements, Pollution
[01] Dejoux, C., Deelstra, H. and Wilkinson, R. C. Pollution in “Ecologie et utilisation des eaux continentales africaines’’, Ed.: Symoens, J. J., Burgis, M & Gaudet, J. J. PNUE, Sér. Tech. 1982, n°1: pp. 164-177.
[02] MLUG. Actes du 1er colloque sur la problématique des déchets à Kinshasa (Congo), 1999.
[03] Kapepula K. Composition et caractéristiques des déchets ménagers solides dans neuf villes africaines. Centre Wallon de Biologie Industrielle, 2008, pp. 94-110.
[04] Mavakala B. K., Le Faucheur S., Mulaji C. K., Laffite A., Devarajan N., Biey E. M., Giuliani G., Otamonga J. P., Kabatusuila P., Mpiana P. T. and Poté J. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests. Waste Management, 2016, 55: 238-48. doi: 10.1016/j.wasman.2016.04.028.
[05] Latham J. R., Wilson K. A., and Steinbrecher A. R. The Mutational Consequences of Plant Transformation. Journal of Biomedicine and Biotechnology, 2006, 25376: 1-7. doi: 10.1155/JBB/2006/25376.
[06] Girijashankar V. Genetic transformation of eucalyptus. Physiology and Molecular Biology Plants, 2011, 17 (1): 9–23. doi: 10.1007/s12298-010-0048-0.
[07] Ngbolua K. N., Bongo G. N., Domondo A., Nsimba B., Iteku J., Lengbiye E., Ashande C., Tshiama C., Inkoto C., Lufuluabo L., Kilunga P., Gafuene G., Mulaji C., Mbemba T., Poté J. and Mpiana P. Synthesis and Bioactivity of Silver Nanoparticles Against Bacteria (E. coli and Enterococcus sp.) Isolated from Kalamu River, Kinshasa City, Democratic Republic of the Congo. Frontiers in Environmental Microbiology, 2018, 4 (1): 29-40. doi: 10.11648/j.fem.20180401.15
[08] Schwartz T., Kohnen W., Jansen B. and Obst U. (2003). Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiology Ecology, 43: 325-335.
[09] Ghosh S., Upadhay A., Singh A., Kumar A. Investigation of antimicrobial activity of silver nano particle loaded cotton fabrics which may promote wound healing. International Journal of Pharma and Bio Sciences, 2010, 1 (3): 1-10.
[10] Logeswari P., Silambarasan S., Jayanthi A.. Synthesis of silver nanoparticles using plants extract and analysis of their antimicrobial property. Journal of Saudi Chemical Society, 2015, 19: 311-317.
[11] Salomoni R., Leo P. and Rodrigues M. F. A. Antibacterial Activity of Silver Nanoparticles (AgNPs) in Staphylococcus aureus and Cytotoxicity Effect in Mammalian Cells. The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs, 2015, 851-857.
[12] Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K., and Nie, S. M. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004, 2 (8): 969-76.
[13] Bertorelle, F., Wilhelm, C., Roger, J., Gazeau, F., Menager, C., and Cabuil, V. Fluorescence-modified superparamagnetic nanoparticles: Intracellular uptake and use in cellular imaging. Langmuir, 2006, 22 (12): 5385–5391.
[14] Kuppusamy P., Yusoff M. M., Gaanty P. M., Natanamurugaraj G. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – An updated report. Saudi Pharmaceutical Journal, 2016, 24, 473–484.
[15] Knapp W. C., Callan C. A., Aitken B., Shearn R., Koenders A. and Hinwood A. Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research International, 2017, 24 (3): 2484–2494. doi: 10.1007/s11356-016-7997-y.
[16] Chandan P., Bengtsson-Palme J., Kristiansson E., and Joakim Larsson D. G. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics, 2015, 16: 964. doi: 10.1186/s12864-015-2153-5.
[17] Matuschek E., Brown D. F. J. and Kahlmeter G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clinical Microbiology and Infection, 2014, 20 (4): 255-266.
[18] Ngbolua K. N., Bishola T. T, Mpiana P. T., Mudogo V., Tshibangu D. S. T., Ngombe N. K., Ekutsu G. E., Tshilanda D. D., Gbolo B. Z., Mwanangombo D. T., Ruphin F. P., Robijaona B. Ethno-botanical survey, in vitro antisickling and free radical scavenging activities of Garcinia punctata Oliv. (Clusiaceae). Journal of Advanced Botany and Zoology, 2014, 1 (2): 1-8.
[19] Mbadiko M. C., Ngbolua K. N., Mpiana P. T., Mutambel’ H., Kikakedimau N. R., Makengo K. G., Pambu L. A., Kemfine L. L., Bongo G. N., Mbemba T. F. Phytochemical screening and assessment of anti-sickling activity of total methanolic extracts of different organs of Curcuma longa L. (Zingiberaceae). The Pharmaceutical and Chemical Journal, 2017, 4 (1): 32-40.
[20] Gbolo B. Z., Asamboa L. S., Bongo G. N., Tshibangu D. S. T., Kasali F. M., Memvanga P. B., Ngbolua K. N. and Mpiana P. T. Bioactivity and Chemical Analysis of Drepanoalpha: An Anti-Sickle Cell Anemia Poly-Herbal Formula from Congo-Kinshasa. American Journal of Phytomedicine and Clinical Therapeutics, 2017, 5 (1): 1-7.
[21] Bongo G. N., Ngbolua K. N., Ashande C. M., Karume K. L., Mukiza J., Tshilanda D. D., Tshibangu D. S. T., Ngombe N. K., Mbemba T. F. and Mpiana P. T. Pharmacological screening of Gymnanthemum coloratum (Willd.) H. Rob. & B. Kahn (Compositae) and Terminalia ivorensis A. Chev. (Combretaceae) from DR Congo: Spotlight on the antisickling, antibacterial and anti-diabetic activities. Tropical Plant Research, 2017, 4 (3): 441–448.
[22] Ngbolua K. N., Mubindukila R. E. N. Mpiana P. T., et al (2014a). In vitro Assessment of Antibacterial and Antioxidant activities of a Congolese medicinal plant species Anthocleista schweinfurthii Gilg (Gentianaceae). Journal of Modern Drug Discovery and Drug Delivery Research, 2014, 1 (3); V1I3. DOI: 10.15297/JMDDR.V1I3.03.
[23] Kabamba S. B. Etude de la pollution des eaux des rivières qui traversent la ville de Kinshasa, Mémoire, Faculté des Sciences, Université de Kinshasa, inédit, Kinshasa, 1981, 49 pp.
[24] Lobo K. K. and Sebyera N. Qualité des eaux captées par la REGIDESO à Kinshasa pour l’approvisionnement publique en eau. Revue Zaïroise des Sciences Nucléaires, 1995, 13: 359-369.
[25] Kilunga P. I., Kayembe M. J., Laffite A., Thevenon F., Devarajan N., Mulaji K. C., Mubedi I. J., Yav G. Z., Otamonga J. P., Mpiana P. T. and Pote J. The impact of hospital and urban wastewaters on the bacteriological contamination of the water resources in Kinshasa, Democratic Republic of Congo. Journal of Environmental Science and Health, Part A, 2016, 1-9. DOI: 10.1080/10934529.2016.1198619.
[26] Environment Protection Agency. Parameters of Water Quality: Interpretation and Standards. Johnstown Castle, Co. Wexford, Ireland, 2001, 133pp.
[27] Cabral J. P. S. Water Microbiology. Bacterial Pathogens and Water. International Journal of Environmental Research and Public Health, 2010, 7: 3657-3703.
[28] Sengupta T. (2013). Impact of sociobiological activities on Narmada River flowing from Omkareshwar to Khalghat (M. P.). PG Department of Zoology, Faculty of Life Science, P. M. B. Gujarati Science College, Devi Ahilya Vishwavidhyalaya, Indore (M. P.), India, PhD Thesis, 152 pp.
[29] Laffite A., Kilunga I. P., Kayembe M. J., Devarajan N., Mulaji K. C., Giuliani G., Slaveykova I. V. and Poté J. Hospital Effluents Are One of Several Sources of Metal, Antibiotic Resistance Genes, and Bacterial Markers Disseminated in Sub-Saharan Urban Rivers. Frontiers in Microbiology, 2016, 7: 1-14.
[30] Noorhosseini S. A., Allahyari M. S., Damalas C. A. and Moghaddam S. S. Public environmental awareness of water pollution from urban growth: The case of Zarjub and Goharrud rivers in Rasht, Iran. The Science of the Total Environmental, 2017, 128: 2019-2025. DOI: 10.1016/j.scitotenv.2017.05.128.
[31] Barreto A., Guimarães B., Radhouani H., Araújo C., Gonçalves A., Gaspar E., Rodrigues J., Igrejas G. and Poeta P. Detection of antibiotic resistant E. coli and Enterococcus spp. in stool of healthy growing children in Portugal. Journal of Basic Microbiology, 2009, 49: 503-512.
[32] Lukasova J. and Sustackova A. Enterococci and Antibiotic Resistance. Acta Vet. Brno, 2003, 72: 315-323.
[33] Frank M. A. Antibiotic resistance in enteric Escherichia coli and Enterococcus sp. isolated from ungulates at Marwell Zoo, England. MSc thesis, Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa, 47 pp.
[34] Okafor F., Janen A., Kukhtareva T., Edwards V., Curley M. Green Synthesis of Silver Nanoparticles, Their Characterization, Application and Antibacterial Activity. International Journal of Environmental Research and Public Health, 2013, 10: 5221-5238; doi: 10.3390/ijerph10105221.
[35] Manikant T., Kumar A., Kumar S. Characterization of Silver Nanoparticles Synthesizing Bacteria and Its Possible Use in Treatment of Multi Drug Resistant Isolate. Frontiers in Environmental Microbiology, 2017; 3 (4): 62-67.
[36] Bruneton J. Pharmacognosie, Phytochimie, Plantes médicinales. 3ème Edition revue et augmentée, Paris: Tec & Doc, 1999, pp. 421-499.
[37] Paredes D., Ortiz C. and Torres R. (2014). Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). International Journal of Nanomedicine, 9: 1717-1729.
[38] Singh R., Wagh P., Wadhwani S., Gaidhani S., Kumbhar, Bellare J. and Chopade B. A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. International Journal of Nanomedicine, 8: 4277-4290.
[39] Abhishek K., Navin P., Banerjee U. C. Green synthesis of Silver Nanoparticles. Current Research & Information on Pharmaceuticals Sciences, 2010, 11 (4): 69-71.
[40] Xi-Feng Z., Zhi-Guo L., Wei S. Sangiliyandi G. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. International Journal of Molecular Sciences, 2016, 17 (1534): 1-34. doi: 10.3390/ijms17091534.
[41] Prateek M., Swati J., Suman R. & Jain N. K. Pharmaceutical aspects of silver nanoparticles. Artificial Cells, Nanomedicine and Biotechnology, 2017, 1-13.
[42] Shakeel A., Mudasir A., Lal Swami B. and Saiqa I. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. Journal of Advanced Research, 7: 17-28.
[43] Chen S., Li X., Sun G., Zhang Y., Su J. and Ye J. Heavy Metal Induced Antibiotic Resistance in Bacterium LSJC7. International Journal of Molecular Sciences, 2015, 16, 23390-23404; doi: 10.3390/ijms161023390.
[44] Seiler C. and Berendonk T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 2012, 3 (399): 1-10.
[45] Berg, J., Tom-Petersen A. and. Nybroe O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Letters in Applied Microbiology, 2005, 40, 146–151.
[46] Peltier, E., Vincent, J., Finn, C. and Graham D. W. Zinc-induced antibiotic resistance in activated sludge bioreactors. Water Resources, 2010, 44, 3829–3836.
[47] Stepanauskas, R., Glenn T. C., Jagoe C. H., Tuckfield R. C., Lindell A. H., King C. J. and McArthur J. V. Co-selection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology, 2006, 8, 1510–1514.
[48] Jan A. T., Azam M., Siddiqui K., Ali A., Choi I., Mohd Q. and Haq R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. International Journal of Molecular Sciences, 2015, 16: 29592–29630. doi: 10.3390/ijms161226183.
[49] Bernard A. Cadmium and its adverse effects on human health. Indian Journal of Medical Research, 128 (4): 557-64.
[50] Tchounwou B. P., Yedjou G. C., Patlolla K. A. and Sutton J. D. Heavy metals toxicity and the environment. Molecular, Clinical and Environmental Toxicology, 2012, 101: 133-164. doi: 10.1007/978-3-7643-8340-46.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.