Articles Information
International Journal of Materials Chemistry and Physics, Vol.1, No.3, Dec. 2015, Pub. Date: Oct. 19, 2015
Growth and Properties Investigation of the Cufe2.33in9.67s17.33 Single Crystal
Pages: 300-307 Views: 2971 Downloads: 1218
Authors
[01]
S. V. Trukhanov, Scientific Practical Materials Research Centre of NASB, Minsk, Belorussia.
[02]
A. V. Trukhanov, Scientific Practical Materials Research Centre of NASB, Minsk, Belorussia.
[03]
I. V. Bodnar, Belarussian State University of Informatics and Radioelectronics, Minsk, Belorussia.
Abstract
The CuFe2.33In9.67S17.33 single crystals have been grown by the Bridgman method. The optical, magnetic and electrical properties investigations for this single crystal are carried out in 5-300 K temperature and 0-14 T magnetic field ranges. The variation of the spectral dependence of the absorption coefficient has been found. The band gap has been determined which is 1.5 eV. It is established that the sample studied is paramagnet. In ground state the ferromagnetic correlations of the short-range order typical for the spin glass with freezing temperature in range of 9 K are detected. The magnetic ordering temperature is almost 11 K. The sample studied is semiconductor with 15.2 kΩ*cm resistivity at room temperature. The magnetic and electrical states formation mechanism for the CuFe2.33In9.67S17.33 single crystal is proposed.
Keywords
Magnetically Ordered Materials, Crystal Growth, Optical Properties, Exchange and Superexchange, Transmission Electron Microscopy, Magnetic Measurements
References
[01]
G. Dagan, S. Endo, G. Hodes, G. Zawatzky, D. Gahen, Sol. Energy Mater. 11 (1984) 57.
[02]
H. Lewerenz, H. Kozlowsky, K.D. Husemann, Nature 321 (1986) 687.
[03]
A.V. Vedyaev, Phys. Usp. 45 (2002) 1296.
[04]
T. Torres, V. Sagredo, L.M. de Chalbaud, G. Attolini, F. Bolzoni, Physica B 384 (2006) 100.
[05]
J.L. Soubeyroux, D. Fiorani, E. Agostinelli, S.C. Bhargava, J.L. Dormann, Journal De Physique 49 (1988) 1117.
[06]
J. Villain, Z. Phys. B 33 (1979) 31.
[07]
D. Fiorani, S. Viticoli, J. L. Dorman, J. L. Tholence, A.P. Murani, Phys. Rev. B 30 (1984) 2776.
[08]
M. Alba, J. Hamman, M. Nogues, J. Phys. C 15 (1982) 5441.
[09]
I.V. Bodnar, S.V. Trukhanov, Semiconductors 45 (2011) 861.
[10]
I.V. Bodnar, S.V. Trukhanov, S.A. Pauliukavets, M.A. Novikova, J. Spintronics and Magnetiс Nanomater. 1 (2012) 75.
[11]
I.V. Bodnar, S.A. Pavlyukovets, S.V. Trukhanov, Yu.A. Fedotova, Semiconductors 46 (2012) 606.
[12]
I.V. Bodnar, M.A. Novikova, S.V. Trukhanov, Semiconductors 47 (2013) 596.
[13]
I.V. Bodnar, S.V. Trukhanov, Semiconductors 45 (2011) 1408.
[14]
I.V. Bodnar, S.V. Trukhanov, Semiconductors 48 (2014) 705.
[15]
S.V. Trukhanov, I.V. Bodnar, M.A. Zhafar, J. Magn. Magn. Mater. 379 (2015) 22.
[16]
S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, JETP 111 (2010) 209.
[17]
S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, Low Temp. Phys. 37 (2011) 465.
[18]
S.V. Trukhanov, Physics of the Solid State 53 (2011) 1845.
[19]
S.V. Trukhanov, A.V. Trukhanov, A.N. Vasil’ev, A. Maignan, H. Szymczak, JETP Letters 85 (2007) 507.
[20]
S. V. Trukhanov, A. V. Trukhanov, H. Szymczak, C. E. Botez, A. Adair, J. Low Temp. Phys. 149 (2007) 185.
[21]
S. V. Trukhanov, J. Mater. Chem. 13 (2003) 347.
[22]
I. V. Bodnar, S. A. Pavlukovets, Semiconductors 45 (2011) 1395.
[23]
S. V. Trukhanov, JETP 100 (2005) 95.
[24]
V. D. Doroshev, V. A. Borodin, V. I. Kamenev, A. S. Mazur, T. N. Tarasenko, A. I. Tovstolytkin, S. V. Trukhanov, J. Appl. Phys. 104 (2008) 093909.
[25]
S. V. Trukhanov, A. V. Trukhanov, A. N. Vasiliev, A. M. Balagurov, H. Szymczak, JETP 113 (2011) 820.
[26]
S. V. Trukhanov, JETP 101 (2005) 513.
[27]
S. V. Trukhanov, A. V. Trukhanov, S. G. Stepin, H. Szymczak, C. E. Botez, Physics of the Solid State 50 (2008) 886.
[28]
S. V. Trukhanov, A. V. Trukhanov, C. E. Botez, A. H. Adair, H. Szymczak, R. Szymczak, J. Phys.: Condens. Matter. 19 (2007) 266214.
[29]
J. B. Goodenough, Phys. Rev. 100 (1955) 564.
[30]
J. Kanamori, J. Phys. Chem. Sol. 10 (1959) 87.
[31]
J. B. Goodenough, A. Wold, R. J. Arnott, N. Menyuk, Phys. Rev. 124 (1961) 373.
[32]
T. Kanomata, H. Ido, T. Kaneko, J. Phys. Soc. Jpn. 34 (1973) 554.
[33]
B. S. Son, S. J. Kim, C. S. Kim, M. H. Jung, Y. Jo, J. Korean Phys. Soc. 52 (2008) 1077.
[34]
J. L. Dormann, M. Seqqat, D. Fiorani, M. Nogues, J. L. Soubeyroux, S. C. Bhargava, P. Renaudin, Hyperfine Interactions 54 (1990) 503.
[35]
V. Sagredo, M. C. Mororón, L. Betancourt, G. E. Delgado, J. Magn. Magn. Mater. 312 (2007) 294.
[36]
P. Burlet, E. F. Bertaut, Solid State Commun. 5 (1967) 279.
[37]
C. I. Hsu, J. J. Steger, E. A. Demeo, A. Wold, G. S. Heller, J. Solid State Chem. 13 (1975) 304.
[38]
G. Goya, V. Sagredo, Phys. Rev. B 64 (2001) 235208.
[39]
M. H. Kruder, A. B. Bortz, Phys. Today 37 (1984) 20.
[40]
S. Nafis, J. A. Woollam, Z. S. Shan, D. J. Sellmyer, J. Appl. Phys. 70 (1991) 6050.
[41]
C. P. Bean, J. D. Livingstone, J. Appl. Phys. 30 (1959) S120.
[42]
S. V. Trukhanov, A. V. Trukhanov, H. Szymczak, J. Phys. Chem. Sol. 67 (2006) 675.
[43]
S.V. Trukhanov, V.V. Fedotova, A.V. Trukhanov, H. Szymczak, C. E. Botez, Technical Physics 53 (2008) 49.