Articles Information
International Journal of Modern Physics and Applications, Vol.1, No.4, Sep. 2015, Pub. Date: Jul. 20, 2015
Contact Resistance in Organic Thin Film Transistors: Application to Octithiophene (8T)
Pages: 131-138 Views: 4292 Downloads: 57850
Authors
[01]
S. Zorai, Physics laboratory of Materials: Structure and Properties, Group of Physics Components and Nanometric Devices, Carthage University, Faculty of Sciences of Bizerte, Jarzouna-Bizerte, Tunisia.
[02]
R. Bourguiga, Physics laboratory of Materials: Structure and Properties, Group of Physics Components and Nanometric Devices, Carthage University, Faculty of Sciences of Bizerte, Jarzouna-Bizerte, Tunisia.
Abstract
In this paper, we present a device model of the charge distribution and the contact resistance in organic thin film transistor (OTFTs) in which the active layers are made of octithiophene. In this model we suppose that the current in organic semiconductors is only carried by injected carriers from the electrodes and an analytical formulation for the charge distribution inside the organic layer was derived.
Keywords
Thin Film, Organic Semiconductors, Contact Resistance, Active Layers
References
[01]
A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986)
[02]
Y.Y. Lin, D.J. Gundlach, S.F. Nelson, T.N. Jackson, IEEE Electron Device Lett. 18, 606 (1997)
[03]
G. Horowitz, R. Hajlaoui, R. Bourguiga, M. Hajlaoui, Synth. Met. 101, 401 (1999)
[04]
Z. Bao, A.J. Lovinger, A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996)
[05]
Z.A. Bao, A.J. Lovinger, J. Brown, J. Am. Chem. Soc. 120, 207 (1998)
[06]
D. Shukla, S.F. Nelson, D.C. Freeman, M. Rajeswaran, W.G. Ahearn, D.M. Meyer, J.T. Carey, Chem. Mater. 20, 7486 (2008)
[07]
H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Nature 401, 685 (1999)
[08]
P.F. Baude, D.A. Ender, M.A. Haase, T.W. Kelley, D.V. Muyres, S.D. Theiss, Appl. Phys. Lett. 82, 3964 (2003)
[09]
R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmler, O. Shchekin, A. Dodabalapur, Appl. Phys. Lett. 88, 123502 (2006)
[10]
H.E.A. Huitema, G.H. Gelinck, J. van der Putten, K.E. Kuijk, C.M. Hart, E. Cantatore, P.T. Herwig, A. van Breemen, D.M. de Leeuw, Nature 414, 599 (2001)
[11]
G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal E. Cantatore, L. Schrijnemakers, J. van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.H. Huisman, E.J. Meijer, E.M. Benito, F.J. Touwslager, A.W. Marsman, B.J.E. van Rens, D.M. De Leeuw, Nat. Mater. 3, 106 (2004)
[12]
J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Proc. Natl. Acad. Sci. USA 98, 4835 (2001)
[13]
B. Comiskey, J.D. Albert, H. Yoshizawa, J. Jacobson, Nature 394, 253 (1998)
[14]
M. Shur, M. Hack, J. Appl. Phys. 55 (1984) 3831.
[15]
Y.Y. Lin, D.J. Gundlach, T.N. Jackson, S.F. Nelson, IEEE Trans. Dev. 44 (1997) 1325.
[16]
G. Horowitz, Adv. Mater. 10 (1998) 365
[17]
S. Zorai and R. Bourguiga, Eur. Phys. J. Appl. Phys. 59 (2012) 20201.
[18]
S. Mansouri, M. Mahdouani, A. Oudir, S. Zorai, S. Ben Dkhil, G. Horowitz, R. Bourguiga, Eur. Phys. J. Appl. Phys. 48 (2009) 30401.
[19]
S. Zorai, S. Mansouri and R. Bourguiga, Superlattices and Microstructures 52 (2012) 1103–1118.
[20]
G. Horowitz, J. Mater. Res. 19 (2004) 1946.
[21]
P.V. Necliudov, M.S. Shur, D.J. Gundlach, T.N. Jackson,J. Appl. Phys. 88, 6594 (2000)
[22]
G. Horowitz, R. Hajlaoui, P. Delannoy, J. Phys. III France 5, 1786 (1995)
[23]
W.E. Spear, P.G. Le Comber, J. Non-Cryst. Solids 727, 8 (1972)
[24]
C. H. Kim, Y. Bonnassieux, G. Horowitz. IEEE Trans. Electron Devices, , 60 (2013), 280.
[25]
S. M. Skinner, J. Appl. Phys., 26, (1955) 5, 498–508
[26]
S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. New York: Wiley, 2007.
[27]
S. Verlaak, V. Arkhipov, and P. Heremans.,82( 2003) 745–747.
[28]
A. Bolognesi, M. Berliocchi, M. Manenti, A. D. Carlo, P. Lugli, K. Lmimouni, and C. Dufour, IEEE Trans. Electron Devices, 51 (2004)1997–2003.
[29]
M. Mottaghi and G. Horowitz, Org. Electron., 7,(2006) 528–536.
[30]
J. Zaumseil, K. W. Baldwin, and J. A. Rogers, J. Appl. Phys. 93, (2003) 6117
[31]
P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, Solid-State Electron. 47, (2003).259
[32]
H. Klauk, G. Schmid, W. Radlik, W. Weber, L. S. Zhou, C. D. Sheraw, J. A. Nichols, and T. N. Jackson, Solid-State Electron. 47, (2003) 297.
[33]
D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys. 100, (2006).024509
[34]
T. Minari, T. Miyadera, K. Tsukagoshi, Y. Aoyagi, and H. Ito, Appl. Phys. Lett. 91, (2007) 053508
[35]
S. W. Luan and G. W. Neudeck, J. Appl. Phys. 72, (1992) 766.
[36]
S. Zorai, S. Mansouri, R. Bourguiga Superlattices and Microstructures 55 (2013) 211–221.
[37]
S. Mansouri, S. Zorai and R. Bourguiga, Synthetic Metals162 (2012) 231–235