International Journal of Plant Science and Ecology
Articles Information
International Journal of Plant Science and Ecology, Vol.5, No.1, Mar. 2019, Pub. Date: Apr. 29, 2019
Impact of Vegetation for Nutrient Cycling and Maintaining Soil Fertility in Collected Plants from Wadi Fatimah, Makkah, KSA
Pages: 11-24 Views: 1432 Downloads: 347
Authors
[01] Hameda El Sayed Ahmed El Sayed, Biology Department, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia.
[02] Abdel Khalik Kadry, Biology Department, Faculty of Applied Science, Umm Al Qura University, Makkah, Saudi Arabia; Botany Department, Faculty of Science, Sohag University, Sohag, Egyp.
[03] Tarek Saif, Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia; National Institute of Oceanography and Fisheries, Cairo, Egypt.
Abstract
Background and Objective: Wadi Fatimah creates in the Hijaz mountains of Saudi Arabia. It runs about 70 km long across the territory of the Tihamah coastal plain west of the mountain chain at elevations ranging between 0 to 500 m. It is one of the most important wadi which runs between Makkah and Jeddah. The importance of the phytogeography of Saudi Arabia is the result of its location of the meeting point of Asia and Africa continents, and two or three major plant geographic regions. It’s the land play a great role as an avenue by which plant species could penetrate or migrate between these regions. Materials and Methods: This study concluded that the macro and micronutrient increased significantly in the soil and transfer to the plants parts (roots & shoots) in different areas of the Wadi Fatimah in Kingdom of Saudi Arabia under normal climatic stress. It’s the land play a great role as an avenue by which plant species could penetrate or migrate between these regions. In addition, the results: indicated that the contents of macro and micro nutrient mineral elements (N, P, K, Ca, Mg, Na, Fe, Zn, Mn & Cu) increased significantly under normal climatic area stress in the session 2015-2016 compared with the normal compositions. The heavy metals (Cd+; Cr+; Ni+; Pb+) contents in different soils and plants collected from different areas of Wadi Fatimah concentrated in plants. In general, the nutrient elements were the main mechanisms used by the plant to raise its efficiency to bear the outside stress for growth and increased vegetative plants. The conclusion indicated that the contents of macro and microelements (Na, K, Ca, Mg, N, P, Fe, Mn, B, Zn, Cu and Cl) increased significantly under field conditions in the shoots and roots compared with the soils. The data provide strong support to the hypothesis that exogenous of nutrient elements reduces the harmful effects of salinity and increases resistance to salinity in collected plants.
Keywords
Nutrient Mineral Elements Nutrient Cycling, Wade Fatimah, Soil Fertility, Relationship
References
[01] Hillel, D. and Tadmor, J. (1962). Water regime and vegetation in the central Negev highlands of Israel. Ecology 43: 33-41.
[02] Ayyad, M. A.; Ghbbour, I. (1986). Hot deserts of Egypt and Sudan. In: M. Evenari; I. Noy- Meir & D. W. Goodall (eds.), Hot deserts and arid shrublands: 149-202. Amsterdam.
[03] El-Baloshy, S. (2007). Agricultural studies in Numan Valley, Makkah. M.Sc. Faculty of Social Science, Geography Department, Umm Al-Qura University, Makkah, Saudi Arabia.
[04] Batanouny, K. H.; Baeshin, N. A. (1978). Studies on the flora of Arabia. 1. The Jeddah- Makkah road, Saudi Arabia. Taeckholmia 9: 67-81.
[05] Organgi, R. (1982). Ecological Studies in Makkah Region. 1- Vegetation Development at Wadi Fatma. J. Coll. Sci., King Saud Univ. 13 (1), pp. 25-51.
[06] Johnson P. R. (1983). A preliminary lithofacies map of the Saudi Arabian lithofacies and Shield, an interpretation of the lithostratigraphy of the late Proterozoic layered rocks of Saudi Arabia. Scale 1:1,000,000 in two sheets, Kingdom of Saudi Arabia, D. M. M. R., Tech. Rec., RF-TR-03-2.
[07] Al-Nefei, A. (2008). Phytogeography of Saudi Arabia. Saudi Journal of Biological Sciences 15 (1) 159-176 June, 2008.
[08] Walter H., E. Harnickell and D. Mueller-Dombois. (1975). Climate Diagram Maps. Berlin: Springer Verlag.
[09] Zohary, M. (1973). Geobotanical foundations of the Middle East. 2 vols. Gustav Fischer Verlag, Stuttgar.
[10] White, F. and Le’onard, J. (1991). Phytogeographical links between Africa and Southwest Asia. Fl. Veg. Mundi. Vol. 9; pp 229-246.
[11] Migahid, A. M.; El-Shafei, A. M.; Abdel Rahman, A. A. (1959). Ecological observations in Western and Southern Sinai. Bulletin de la Societe de Geographie D’Egypte 32, 165–206.
[12] Migahid, A. M. 1952. Further observations on the flow and loss of water in the “Sudd” swamps of the Upper Nile. Cairo: Cairo University Press.
[13] Black, C. A. (1965). Method of Soil Analysis, Part 2, Chemical and Microbiological Properties, American Society of Agronomy, Inc, Publisher, Madison, Wisconsin USA.
[14] Page, A. L. (1982). Method of Soil Analysis, Part 2, Chemical and Microbiological Properties, Second edition, American Society of Agronomy, Inc and Soil Science Society of America, Inc., Publisher, Madison, Wisconsin USA.
[15] Richards, L. A. (1954). Diagnosis and Improvement of saline and alkali soils U. S. Dept. of Agriculture. Hand book No. 60.
[16] Johnson, C. M.; Ulrich, A. (1959): analytical methods for use in plant analysis. U. S. Dept. Agric. Calif., Univ., Agric. Inform. Bull, 766.
[17] Allen, S.; Grimshay, H. M.; Parkinson, J. A. and Quarmby, C. (1974). Chmical Analysis of ecological materials Black well Scientific Publicalions, Osney. Oxford, Londen. pp 565.
[18] Jackson, W. A.; Thomas, G. W. (1960): Effect of KCl and Dolometic limestone on growth and ion up take of sweet potato. Soil Scie. Vol. 89: pp 347-352.
[19] Leslie, E.; Geoffrey, J. and James, M. (1991). Statistical analysis. In: Interpretation and uses of medical statistics (4th ed). Oxford Scientific Publications (pub). Pp. 411-6.
[20] Kirkpatrick, L. A.; Feeney, B. C. (2013). A simple guide to IBM SPSS statistics for version 20.0. Student ed. Belmont, Calif., Wadsworth, Cengage Learning; x, 115 p.
[21] Collenette, S. (1999): Wild Flowers of Saudi Arabia. NCWCD (National Commission for Wildlife Conservation and Development, Publication), Saudi Arabia 799 pp.
[22] Parida, A. K.; Das, A. B. (2005) Salt Tolerance and Salinity Effects on Plants: A Review. Ecotoxicology and Environmental Safety, 60, 324-349. https://doi.org/10.1016/j.ecoenv. 2004.06.010
[23] Affenzeller, M. J.; Darehshouri, A.; Andosch, A.; Lütz, C.; Meindl, U. L. (2009). Salt stressinduced cell death in the unicellular green alga Micrasterias denticulate. J. Exp. Bot. 60, 939–954.
[24] Bustos, D.; Lascano, R.; Villasuso, A. L.; Machado, E.; Senn, M. E.; Córdoba, A.; Taleisnik, E. (2008). Reductions in maize root-tip elongation by salt and osmotic stress do not correlate with apoplastic O2·- Levels. Ann. Bot 102, 551–559.
[25] Apel, K.; Hirt, H., (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.
[26] Ahammed, G. J.; Ruan, Y. P.; Zhou, J.; Xia, X. J.; Shi, K.; Zhou, Y. H.; Yu, J. Q. (2013). Brassinosteroid alleviates polychlorinated biphenyls-induced oxidative stress by enhancing antioxidant enzymes activity in tomato. Chemosphere 90, 2645–2653.
[27] Ghanem, M. E.; Gharsb, M. A.; Frettinger, P.; Pérez-Alfocea, F.; Lutts, S.; Wathelet, J. P.; Jardin, P. D.; Fauconnier, M. L. (2012). Organ-dependent oxylipin signature in leaves and roots of salinized tomato plants (Solanum lycopersicum). J. Plant Physiol 169, 1090–1101.
[28] Jihong, Zhang; Li, Zeng; Shaoyang, Chen; Helong, Sun; Shuang, Ma (2018). Transcription profile analysis of Lycopersicum esculentum leaves, unravels volatile emissions and gene expression under salinity stress. Plant Physiology and Biochemistry 126 11–21.
[29] Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25, 239–250.
[30] Hasegawa, P. M.; Bressan, R. A.; Zhu, J. K.; Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463–499.
[31] Neto, A. D.; Prisco, J. T.; Enas-Filho, J. (2004). Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Brazillian Journal of Plant Physiology, 16, 591-596.
[32] Aliakbar, M. M.; Kbea, M. (2008). Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum). Wor. J. Agr. Sci. 4 (3): 351-358.
[33] Drean, J. J.; Abdelly, C.; Amarger, N.; Aouani, E. A.; Aurag, J.; Gherbi, H.; Jebara, M.; Lluch, C.; Payre, H.; Schump, O.; Soussi, M.; Sifi, B.; Trabelsi, M. (2001). An interdisciplinary research strategy to improve symbiotic nitrogen fixation an yield of common bean (phaseolus vulgaris) in salinized areas of the Mediterranean basin. J. Bioth. 91: 257-268.
[34] Mcglasson, W. B.; DOSTAL, H. C.; TIGCHELAAR, E. C. (1975). Comparison of propyleneinduced responses of immature fruit of normal and mutant rin tomatoes. Plant Physiol 55: 218-222.
[35] Rush, W. D.; Epstein, E. (1976). Genetic response to salinity. Differences between salt-sensitive and salt-tolerant genotypes of the tomato. Plant Physiol 57: 162-166.
[36] Mizrahi, Y.; Zohar, R.; Malis-Arad, S. (1982). Effect of sodium chloride on fruit ripening of the nonripening tomato mutants nor and rin. Plant Physiol. 69: 497-501.
[37] Munns, R.; Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681.
[38] Albacete, A.; Ghanem, M. E.; Martínez-Andújar, C.; Acosta, M.; Sánchez-Bravo, J.; Martínez, V.; Lutts, S.; Dodd, I. C.; Pérez-Alfocea, F. (2008). Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J. Exp. Bot. 59, 4119–4131.
[39] Pérez-Alfocea, F.; Ghanem, M. E.; Gómez-Cadenas, A.; Dodd, I. C. (2011). Omics of root-toshoot signaling under salt stress and water deficit. OMICS 15, 893–901.
[40] Minguet, E. G.; Alabadí, D.; Blázquez, M. A. (2014). Gibberellin implication in plant growth and stress responses. In: Tran, L. S. P., Pal, S. (Eds.), Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications. Springer, New York, pp. 119–161.
[41] Abdel-Hamid, A. M. E.; Mohamed, H. I. (2014). The effect of the exogenous gibberellic acid on two salt stressed barley cultivars. Eur. Sci. J. 10, 228–245.
[42] Elgala A. M.; Aly, O. M.; EL-Sikhry, E. M. (1990): Effect of certain soil amendments on the availability of Fe, Mn, Zn and Cu to sorghum plants in sandy soil. Egypt. J. Soil sci (30, No. 1-2: 301-312).
[43] Holopainen, J. K. (2004). Multiple functions of inducible plant volatiles. Trends Plant Sci. 9, 529–533.
[44] Tholl, D., Boland, W., Hansel, A., Loreto, F., Rӧse, U. S. R., Schnitzler, J. P., 2006. Practical approaches to plant volatile analysis. Plant J. 45, 540–560.
[45] Loreto, F.; Delfine, S. (2000). Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol 123, 1605–1610.
[46] Teuber, M., Zimmer, I., Kreuzwieser, J., Ache, P., Polle, A., Rennenberg, H., Schnitzler, J. P., (2008). VOC emission of Grey poplar leaves as affected by salt stress and different N sources. Plant Biol. 10, 86–96.
[47] El-Haak, M. A. (1986): water economy and productivity of some native and introduced fodder plant species of the Western Mediterranean coast of Egypt. Ph. D. Thesis, Tanta University, 250 pp.
[48] Harley, P.; Guenther, A.; Zimmerman, P. 1996. Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiol. 16, 25–32.
[49] Harrison, S. P.; Morfopoulos, C.; Dani, K. G. S.; Prentice, I. C.; Arneth, A.; Atwell, B. J.; Barkley, M. P.; Leishman, M. R.; Loreto, F.; Medlyn, B. E.; Niinemets, Ü.; Possell, M.; Peñuelas, J.; Wright, I. J. (2013). Volatile isoprenoid emissions from plastid to planet. New Phytol. 197, 49–55.
[50] Legay, G.; Marouf, E.; Berger, D.; Neuhaus, J. M.; Mauch-Mani, B.; Slaughter, A. (2011). Identification of genes expressed during the compatible interaction of grapevine with Plasmopara viticola through suppression subtractive hybridization (SSH). Eur. Jour. Plant. Pathol. 129, 281-301.
[51] Loreto, F.; Schnitzler, J. P. (2010). Abiotic stresses and induced BVOCs. Trends Plant Sci. 15, 154–166.
[52] Benjamin, O.; Silcock, P.; Leus, M.; Everett, D. W. (2012). Multilayer emulsions as delivery systems for controlled release of volatile compounds using pH and salt triggers. Food Hydrocolloids 27, 109–118.
[53] Jihong, Zhang; Li, Zeng; Shaoyang, Chen; Helong, Sun; Shuang, Ma (2018). Transcription profile analysis of Lycopersicum esculentum leaves unravels volatile emissions and gene expression under salinity stress. Plant Physiology and Biochemistry 126 11–21.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.