International Journal of Plant Science and Ecology
Articles Information
International Journal of Plant Science and Ecology, Vol.7, No.1, Mar. 2021, Pub. Date: Apr. 16, 2021
Deciphering the Saga of Evolution and Genomics of Cultivated Rice
Pages: 1-6 Views: 1043 Downloads: 209
Authors
[01] Deepayan Roy, Department of Genetics and Plant Breeding, G. B. Pant University of Agriculture and Technology, Pantnagar, India.
[02] Indra Deo Pandey, Department of Genetics and Plant Breeding, G. B. Pant University of Agriculture and Technology, Pantnagar, India.
Abstract
Rice is one of the most important cereal crop which is being cultivated globally, the crop has come a long way and improved a lot in terms of production, productivity, insect-pest resistance, quality and abiotic stress tolerance aspect. Still there is a need for continuous improvement in order to tackle the major challenges ahead like- global changing climate scenario, increasing world population, always evolving pathotypes of insects and other pathogens and some other major bottlenecks. Rice genome was the first crop genome to be sequenced which helped the researchers in underpinning of the major as well as the minor QTLs governing the traits which are of relevance to crop breeders. Consequently, the developments in rice genomics has helped in enriching the research domain by working out synteny and collinearity of rice genomes with genomes of other cereals. This review paper bring into light various researches like- theories of single and multiple origins of cultivated rice, role of domestication and of introgression of genes and also origin and evolution of fragrance in rice. Domestication led to rapid genetic erosion and loss of variability so there is a need to study properly the evolution of rice and excavate more and more wild relatives. Such wild relatives can then be scouted to find numerous genes of interest, which we can transfer in our cultivated varieties today for an overall improvement of the rice cultivars that are being grown today and try to improve yield.
Keywords
Rice, Evolution, Genomics
References
[01] S. Konishi, T. Izawa, S.-Y. Lin, K. Ebana, Y. Fukuta, T. Sasaki, et al., An SNP caused loss of seed shattering during rice domestication, Science 312 (2006) 1392–1396.
[02] C. Li, A. Zhou, T. Sang, Rice domestication by reduced shattering, Science 311 (2006) 1936–1939.
[03] H.-S. Ji, S.-H. Chu, W. Jiang, Y.-I. Cho, J.-H. Hahn, M.-Y. Eun, et al., Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes, Genetics 173 (2006) 995– 1005.
[04] Z. Lin, M. E. Griffith, X. Li, Z. Zhu, L. Tan, Y. Fu, et al., Origin of seed shattering in rice (Oryza sativa L.), Planta 226 (2007) 11–20.
[05] Stebbins GL (1981). Why are there so many species of flowering plants? Bioscience (31): 573–577.
[06] D. A. Vaughan, E. Balazs, J. S. Heslop-Harrison, From domestication to super-domestication, Ann. Bot. 100 (2007) 893–901.
[07] Q. Zhu, S. Ge, Phylogenetic relationships among A-genome species of the genus Oryza revealed by intron sequences of four nuclear genes, New Phytol. 167 (2005) 249–267.
[08] H. Zhou, Z. Xie, S. Ge, Microsatellite analysis of genetic diversity and population genetic structure of a wild rice (Oryza rufipogon Griff.) in China, Theor. Appl. Genet. 107 (2003) 322–339.
[09] M. Nakagahra, Geographic distribution of esterase genotypes of rice in Asia, Rice Genet. Newsl. 1 (1984) 118–120.
[10] D. A. Vaughan, P. L. Sanchez, J. Ushiki, A. Kaga, N. Tomooka, Asian rice and weedy rice—evolutionary perspectives, in: J. Gressel (Ed.), Crop Ferality and Volunteerism, Taylor & Francis, Baco Raton, 2005, pp. 257– 277.
[11] D. Q. Fuller, E. Harvey, L. Qin, Presumed domestication? Evidence for wild rice cultivation and domestication in the fifth millennium BC of the LowerYangtze region, Antiquity 81 (2007) 316–331.
[12] Y. F. Zheng, G. P. Sun, X. G. Chen, Characteristics of the short rachillae of rice from archaeological sites dating to 7000 years ago, Chin. Sci. Bull. 52 (2007) 1654–1660.
[13] L. Wang, M. Sarnthein, H. Erlenkeuser, P. M. Grootes, J. O. Grimalt, C. Pelejero, G. Linck, Holocene variations in Asian monsoon moisture: a bidecadal sediment record from the South China Sea, Geophys. Res. Lett. 26 (1999) 2889–2892.
[14] M. Sweeney, S. McCouch, The complex history of the rice domestication, Ann. Bot. 100 (2007) 951–957.
[15] D. A. Vaughan, S. Miyazaki, K. Miyashita, The rice gene pool and human migrations, in: D. Werner (Ed.), Biological Resources and Migration, Springer, Berlin, 2004, pp. 1–13.
[16] S. S. Murray, Searching for the origins of African rice domestication. Antiquity 78 (2004) at http://antiquity.ac.uk/projgall/murray/index.html.
[17] R. Porteres, African cereals: Eleusine, Fonio, Black Fonio, Teff, Brachiaria, Paspalum, Pennisetum, and African rice, in: J. R. Harlan, J. M. de Wet, A. B. L. Stemler (Eds.), Origins of Plant Domestication, Mouton Publishers, The Hague, 1976, pp. 409–452.
[18] H. I. Oka, Origin of Cultivated Rice, Elsevier, Amsterdam, 1988, pp. 1– 254.
[19] M. Semon, R. Nielsen, M. P. Jones, S. R. McCouch, The population structure of African cultivated rice Oryza glaberrima (Steud.): evidence for elevated levels of linkage disequilibrium caused by admixture with O. sativa and ecological adaptation, Genetics 169 (2005) 1639–1647.
[20] T. T. Chang, The origin, evolution, cultivation, dissemination and diversification of Asian and African rices, Euphytica 25 (1976) 435–441.
[21] He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, et al. (2011) Two Evolutionary Histories in the Genome of Rice: the Roles of Domestication Genes. PLoS Genet 7 (6): e1002100.
[22] M. T. Sweeney, M. J. Thomson, B. E. Pfeil, S. McCouch, Caught redhanded: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice, Plant Cell 18 (2006) 283–294.
[23] M. T. Sweeney, M. J. Thompson, Y. G. Cho, Y. J. Park, S. H. Williamson, C. D. Bustamante, et al., Global dissemination of a single mutation conferring white pericarp in rice, PLoS Genet. 3 (2007) 1418–1424.
[24] Q. Zhu, X. Zheng, J. Luo, B. S. Gaut, S. Ge, Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice, Mol. Biol. Evol. 24 (2007) 875–888.
[25] J. P. Londo, Y. C. Chiang, K. H. Hung, T. Y. Cheng, B. Schaal, Phylogeography of Asian wild rice reveals multiple independent domestications of cultivated rice, Oryza sativa, Proc. Nat. Acad. Sci. U.S.A. 103 (2006) 9578–9583.
[26] K. M. Olsen, M. D. Purugganan, Molecular evidence on the origin and evolution of glutinous rice, Genetics 162 (2002) 941–950.
[27] Civáň, P., Brown, T. A. Role of genetic introgression during the evolution ofcultivated rice (Oryza sativa L.). BMC Evol Biol 18, 57 (2018).
[28] Michael J. Kovach, Mariafe N. Calingacion, Melissa A. Fitzgerald, and Susan R. McCouch. The origin and evolution of fragrance in rice (Oryza sativa L.) PNAS August 25, 2009 106 (34) 14444-14449.
[29] Eckardt NA (2000) Sequencing the rice genome. Plant Cell 12 (11): 2011–2017.
[30] Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36 (2): 138–145.
[31] Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296 (5565): 92–100.
[32] Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T et al (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 34: D741–744.
[33] Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L et al (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35: D883–887.
[34] Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6 (1): 4.
[35] Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci U S A 87 (11): 4251–4255.
[36] Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5 (7): 737–739.
[37] Chen M, SanMiguel P, de Oliveira AC, Woo SS, Zhang H, Wing RA, Bennetzen JL (1997) Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. Proc Natl Acad Sci U S A 94 (7): 3431–3435.
[38] McNally KL, Childs KL, Bohnert R, Davidson RM, Zhao K, Ulat VJ, Zeller G, Clark RM, Hoen DR, Bureau TE et al (2009) Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proc Natl Acad Sci U S A 106 (30): 12273–12278.
[39] McCouch SR, McNally KL, Wang W, Sackville HR (2012) Genomics of gene banks: A case study in rice. Am J Bot 99 (2): 407–423.
[40] Zhang Q (2007) Strategies for developing Green Super Rice. Proc Natl Acad Sci U S A 104 (42): 16402–16409.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.