Physics Journal
Articles Information
Physics Journal, Vol.4, No.1, Mar. 2018, Pub. Date: Mar. 24, 2018
Characterization of Point–Plane Corona Discharge in Oxygen with Monte Carlo Method
Pages: 1-8 Views: 2004 Downloads: 541
Authors
[01] A. Settaouti, Electrotechnic Department, University of Sciences and Technology, Oran, Algeria.
Abstract
The corona discharge commonly occurs in many processes and engineering devices. Monte Carlo simulation for the initial phase of an oxygen corona discharge in apoint-plane gap is presented. This method is based on the motion of electrons in electric field and their interactions with the molecules of gas. All the electrons are followed simultaneously in time and their coordinates and velocities are recorded. It lets us study all space and temporal aspects of the electron avalanche evolution. The growth of the first avalanche and the beginning of the second one are simulated to determine which physical process is responsible for the propagation of the discharge. This method provides the spatial-temporal local electric field and particles charged densities variations as well as the ionization front velocity.
Keywords
Simulation, Monte Carlo, Corona, Electric Field, Space Charges, Discharge
References
[01] A. A. Martins, M. J. Pinheiro, "Modeling of an EHD corona flow in nitrogen gas using an asymmetric capacitor for propulsion", J. Electrostatics 69 (2011) 133-138.
[02] E. Moreau, N. Benard, J. D. Lan-Sun-Luk, J. P. Chabriat, "Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure", J. Phys. D: Appl. Phys. 46 (2013) 475204.
[03] PhBéquin, V. Joly, Ph Herzog, "Modeling of a corona discharge microphone", J. Phys. D: Appl. Phys. 46 (2013) 175204.
[04] C. Lee, J. Kim, J. Yoon, "Inactivation of MS2 bacteriophage by streamer corona discharge in water", Chemosphere 82 (2011) 1135-1140.
[05] R. Bussiahn, R. Brandenburg, T. Gerling, E. Kindel, H. Lange, N. Lembke, K. D. Weltmann, Th. von Woedtke, T. Kocher, "The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications", Appl. Phys. Lett., 96 (2010) 143701.
[06] M. Sato, "Environmental and biotechnological applications of high-voltage pulsed discharges in water", Plasma Sources Sci. Technol., 17 (2008) 024021.
[07] G. J. J. Winands, K. Yan, A. J. M. Pemen, S. A. Nair, Z. Liu, E. J. M. van Heesch, "An industrial streamer corona plasma system for gas cleaning", IEEE Trans. Plasma Sci., 34 (2006) 2426-2433.
[08] L. Lei, Y. Zhang, X. Zhang, Y. Shen, "Using a novel pulsed high-voltage gas–liquid hybrid discharge, continuous reactor for removal of organic pollutant in oxygen atmosphere", J. Electrostatics 66 (2008) 16-24.
[09] N. Shirai, R. Sekine, S. Uchida, F. Tochikubo, "Atmospheric negative corona discharge using Taylor cone as a liquid cathode", Jpn. J. Appl. Phys., 53 (2014) 026001.
[10] S. N. Abolmasov, L. Kroely, P. Roca i Cabarrocas, "Negative corona discharge: application to nanoparticle detection in rf reactors", Plasma Sources Sci. Technol. 18 (2009) 015005.
[11] A. N Bhoj, M. J Kushner, "Continuous processing of polymers in repetitively pulsed atmospheric pressure discharges with moving surfaces and gas flow", J. Phys. D: Appl. Phys. 40 (2007) 6953-6968.
[12] U. Straumann, "Mechanism of the tonal emission from ac high voltage overhead transmission lines", J. Phys. D: Appl. Phys. 44 (2011) 075501.
[13] M. Becerra, "Glow corona generation and streamer inception at the tip of grounded objects during thunderstorms: revisited", J. Phys. D: Appl. Phys. 46 (2013) 135205.
[14] J. C. Matthews, J. P. Ward, P. A. Keitch, D. L. Henshaw, "Corona ion induced atmospheric potential gradient perturbations near high voltage power lines", Atmospheric Environment 44 (2010) 5093-5100.
[15] J. C. Matthews, A. J. Buckley, P. A. Keitch, M. D. Wright, D. L. Henshaw, "Measurements of corona ion induced atmospheric electricity modification near to HV power lines", J. Phys.: Conf. Series 142 (2008) 012044.
[16] U. Straumann, "Simulation of the space charge near coronating conductors of ac overhead transmission lines", J. Phys. D: Appl. Phys. 44 (2011) 075502.
[17] P. Wang, F. Fan, F. Zirilli, J. Chen, "A Hybrid Model to Predict Electron and Ion Distributions in Entire Interelectrode Space of a Negative Corona Discharge", IEEE Trans. Plasma Sci., 40 (2012) 421-428.
[18] R. Tirumala, D. B. Go, "Comparative study of corona discharge simulation techniques for electrode configurations inducing non-uniform electric fields", J. Electrostatics 72 (2014) 99-106.
[19] A. Settaouti, L. Settaouti, "Numerical simulation of streamer propagation in oxygen", Int. J. Modern Phys. B. 22 (2008) 293-307.
[20] G. W. Penney, G. T. Hummer, "Photoionization measurements in air, oxygen and nitrogen", J. Appl. Phys. 41 (1970) 572-577.
[21] M. Aints, K. Kudu, A. Haljaste, T. Plank, "Origin of photoionizing radiation in corona discharges in air", J. Phys. D: Appl. Phys. 34 (2001) 905-908.
[22] A. Settaouti, "Monte Carlo simulation of avalanche formation and streamer discharge", Electr. Eng., 92 (2010) 35-42.
[23] S. Kajita, S. Ushirata, Y. Kondo, "Influence of the dissociation process of the electron swarm parameters in oxygen", J. Appl. Phys., 67 (1990) 4015-4023.
[24] B. Florkowska, R. Wlodek, "Pulse height analysis of partial discharges in air", IEEE Trans. Electr. Insul. 28 (1993) 932-940.
[25] K. Adamiak, V. Atrazhev, P. Atten, "Corona discharge in the hyperbolic point-plane configuration: direct ionization criterion versus approximate formulations", IEEE Trans. Dielectr. Electr. Insul. 12 (2005) 1025-1034.
[26] E. Moreau, "Airflow control by non-thermal plasma actuators", J. Phys. D: Appl. Phys. 40 (2007) 605-636.
[27] F. Tochikubo, H. Arai, "Numerical simulation of streamer propagation and radical reactions in positive corona discharge in N2/NO and N2/O2/NO", Jpn. J. Appl. Phys. 41 (2002) 844-852.
[28] N. L. Aleksandrov, E. M. Bazelyan, "Step propagation of a streamer in an electronegative gas", J. Exp. Theo. Phys. 91 (2000) 724-735.
[29] W. J. Yi, P. F. Williams, "Experimental study of streamers in pure N2 and N2/O2 mixtures and a13cm gap", J. Phys. D: Appl. Phys. 35 (2002) 205-218.
[30] N. L. Allen, P. N. Mikropoulos, "Dynamics of streamer propagation in air", J. Phys. D: Appl. Phys. 32 (1999) 913-919.
[31] F. Grange, N. Soulem, J. F. Loiseau, N. Spyrou, "Numerical and experimental determination of ionizing front velocity in a DC point-to-plane corona discharge", J. Phys. D. Appl. Phys. 28 (1995) 1619-1629.
[32] S. I. Yakovlenko, "The velocity of streamer propagation toward anode and cathode in He, Xe, N2, and SF6", Tech. Phys. Lett. 30 (2004) 354-357.
[33] S. Potamianou, N. Spyrou, J. F. Loiseau, "Numerical study of a medium pressure point-to-plane discharge", J. Phys. D: Appl. Phys. 35 (2002) 1373-1380.
[34] P. Tardiveau, E. Marode, A. Agneray, "Tracking an individual streamer branch among others in a pulsed induced discharge", J. Phys. D: Appl. Phys. 35 (2002) 2823-2829.
[35] D. Wang, M. Jikuya, S. Yoshida, T. Namihira, S. Katsuki, H. Akiyama, "Positive- and negative-pulsed streamer discharges generated by a 100-ns pulsed-power in atmospheric air", IEEE Trans. Plasma Sci. 35 (2007) 1098-1103.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.