Physics Journal
Articles Information
Physics Journal, Vol.1, No.2, Sep. 2015, Pub. Date: Sep. 1, 2015
Relevance of Geothermal Sources and Ocean Circulation in the Reduction of the West Antarctica Sea Ice Sheet
Pages: 128-136 Views: 4470 Downloads: 1110
Authors
[01] A. Parker, School of Engineering and Physical Science, James Cook University, Townsville, Australia.
Abstract
A recent article by Schroeder et al. [1] suggests that geothermal heat may be the trigger of the reducing West Antarctica mostly marine ice sheet. I propose that the geothermal contribution is only a small part of a complex situation that also involves effects of ocean and air temperatures, glacial history, ice thickness, mass balance and sub-glacial elevations that unfortunately are not monitored as they should. Consideration of the simultaneous influences of all these factors are required to come to a meaningful conclusion about the West Antarctic (or the Arctic) ice sheet. A complex puzzle is not solved by a single piece, in this case a geothermal source, in the case of the IPCC [2] proxy data of surface air temperature.
Keywords
Geothermal Sources, West Antarctica, Antarctic, Sea Ice, Lower Troposphere Temperature
References
[01] D. M. Schroeder, D. D. Blankenship, D. A. Young & E. Quartini, Evidence for elevated and spatially variable geothermal flux beneath the West Antarctic Ice Sheet, PNAS, 2014, 111(25):9070-9072, doi:10.1073/pnas.1405184111.
[02] https://www.ipcc.ch/report/ar5/.
[03] A. Parker, The present global warming hiatus is part of a quasi-60 year oscillation in the worldwide average temperatures in the downwards phase, Environmental Science: An Indian Journal, 2014, 9(1):14-22. UPDI: www.updi.info/09747451.9/878696.
[04] A. Parker, WHY GLOBAL WARMING WENT MISSING SINCE THE YEAR 2000, Nonlinear Engineering. 2013, 2(3-4):129-135. DOI: 10.1515/nleng-2013-0017.
[05] A. Parker, Global temperatures may not increase by 4ºC by the end of this century, Current Science, 2014, 107(03):0356. www.currentscience.ac.in/Volumes/107/03/0356.pdf.
[06] Lean, J., Evolution of the Sun's Spectral Irradiance since the Maunder Minimum, Geophysical Research Letters, 2000, 27(16):2425-2428.
[07] www1.ncdc.noaa.gov/pub/data/paleo/climate_forcing/solar_variability/lean2000_irradiance.txt.
[08] ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/.
[09] www.climate4you.com.
[10] www.remss.com/data/msu/monthly_time_series/RSS_Monthly_MSU_AMSU_Channel_TLT_Anomalies_Land_and_Ocean_v03_3.txt.
[11] www.argo.ucsd.edu/Marine_Atlas.html.
[12] A. Parker, PRESENT CONTRIBUTIONS TO SEA LEVEL RISE BY THERMAL EXPANSION AND ICE MELTING AND IMPLICATION ON COASTAL MANAGEMENT, Ocean and Coastal Management, 2015, 98:202–211. Doi: 10.1016/j.ocecoaman.2014.05.026.
[13] Screen, J. A. & Simmonds, I., The central role of diminishing sea ice in recent arctic temperature amplification, Nature, 2010, 464, 1334-1337.
[14] Plaza-Faverola, A., S. Bünz, J. E. Johnson, S. Chand, J. Knies, J. Mienert, and P. Franek, Role of tectonic stress in seepage evolution along the gas hydrate-charged Vestnesa Ridge, Fram Strait, Geophys. Res. Lett., 2015, 42, 733-742, doi: 10.1002/2014GL062474.
[15] Feseker, T., Boetius, A., Wenzhöfer, F., Blandin, J., Olu, K., Yoerger, D. R., Camilli, R., German, C.R., De Beer, D., Eruption of a deep-sea mud volcano triggers rapid sediment movement, Nature Communications, 2015, 5, art. No. 5385. DOI: 10.1038/ncomms6385.
[16] Sohn, R. A., Willis, C., Humphris, S., Shank, T. M., Singh, H., Edmonds, H. N., Kunz, C., Hedman, U., Helmke, E., Jakuba, M., Liljebladh, B., Linder, J., Murphy, C., Nakamura, K.-I., Sato, T., Schlindwein, V., Stranne, C., Tausenfreund, M., Upchurch, L., Winsor, P., Jakobsson, M., Soule, A., Explosive volcanism on the ultraslow-spreading Gakkel ridge, Arctic Ocean, Nature, 2008, 453 (7199):1236-1238. DOI: 10.1038/nature07075.
[17] Goldstein, S. L., Soffer, G., Langmuir, C. H., Lehnert, K. A., Graham, D. W., Michael, P. J., Origin of a 'Southern Hemisphere' geochemical signature in the Arctic upper mantle, Nature, 2008, 453 (7191):89-93. DOI: 10.1038/nature06919.
[18] Liu, C.-Z., Snow, J. E., Hellebrand, E., Brügmann, G., Von Der Handt, A., Büchl, A., Hofmann, A. W., Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean Nature, 2008, 452 (7185):311-316. DOI: 10.1038/nature06688.
[19] Jean-Baptiste, P., Fourré, E., Hydrothermal activity on Gakkel Ridge, Nature, 2004, 428 (6978):36. DOI: 10.1038/428036a.
[20] Michael, P. J., Langmuir, C. H., Dick, H. J. B., Snow, J. E., Goldstein, S. L., Graham, D. W., Lehnert, K., Kurras, G., Jokat, W., Mühe, R., Edmonds, H. N., Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean, Nature, 2003, 423 (6943):956-961. DOI: 10.1038/nature01704
[21] Jokat, W., Ritzmann, O., Schmidt-Aursch, M. C., Drachev, S., Gauger, S., Snow, J. Geophysical evidence for reduced melt production on the Arctic ultraslow Gakkel mid-ocean ridge, Nature, 2003, 423 (6943):962-965. DOI: 10.1038/nature01706.
[22] Edmonds, H. N., Michael, P. J., Baker, E. T., Connelly, D. P., Snow, J. E., Langmuir, C. H., Dick, H. J. B., Mühe, R., German, C. R., Graham, D.W., Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic Ocean, Nature, 2003, 421 (6920):252-256. DOI: 10.1038/nature01351.
[23] Edwards, M. H., Kurras, G. J., Tolstoy, M., Bohnenstiehl, D. R., Coakley, B. J., Cochran, J. R., Evidence of recent volcanic activity on the ultraslow-spreading Gakkel ridge, Nature, 2001, 409 (6822):808-812. DOI: 10.1038/35057258.
[24] oceanservice.noaa.gov/education/kits/currents/06conveyor2.htmlimages
[25] Jacobs, S.S., Jenkins, A., Giulivi, C. F., and Dutrieux, P., Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf, Nature Geoscience, 2011, 4(8): 519-523.
[26] Shepherd, A., Wingham, D., and Rignot, E., Warm Ocean is eroding West Antarctic Ice Sheet. Geophysical Research Letters, 2004, 31(23): L23402.
[27] Shepherd, A., Wingham, D. J., Mansley, J. A. D., and Corr, H. F. J., Inland thinning of Pine Island Glacier, West Antarctica, Science, 2001, 291: 862-864.
[28] Wingham, D. J., Wallis, D. W., and Shepherd, A., Spatial and temporal evolution of Pine Island Glacier thinning, 1995-2006, Geophysical Research Letters, 2009, 35: L17501.
[29] A. Parker and C. D. Ollier, There is no real evidence for a diminishing trend of the Atlantic Meridional Overturning Circulation, submitted paper.
[30] Willis, J. K., Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys. Res. Lett., 2010, 37, L06602, doi: 10.1029/2010GL042372. ftp://oceans-ftp.jpl.nasa.gov/pub/jwillis/AMOC/Latest/.
[31] www.antarctica.gov.au.
[32] vortex.nsstc.uah.edu/data/msu/t2lt/uahncdc.lt.
600 ATLANTIC AVE, BOSTON,
MA 02210, USA
+001-6179630233
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - American Institute of Science except certain content provided by third parties.