Physics Journal
Articles Information
Physics Journal, Vol.4, No.2, Jun. 2018, Pub. Date: Jun. 14, 2018
Science, Technology and Non Equilibrium Statistical Mechanics
Pages: 9-16 Views: 105 Downloads: 82
[01] Clóves Gonçalves Rodrigues, School of Exact Sciences and Computing, Pontifical Catholic University of Goiás, Goiânia, Brazil.
[02] Roberto Luzzi, Institute of Physics “Gleb Wataghin”, University of Campinas, Campinas, Brazil.
The binomial Science & Technology (S & T) is inseparable. In this contribution are presented some general considerations on the question of the aspect and interrelationships of the Science, Technology, Government and Society, and the role of Non Equilibrium Statistical Mechanics that are present in the nowadays highly sophisticated technologies and industrial processes that contribute to the wealth and well being of world society. The evolution of the Non Equilibrium Statistical Mechanics is briefly described. In present days remarkable development of all the modern technology, essential for the welfare and progress of the global society, imposes an immense stress on basic Physics, and consequently on Non Equilibrium Statistical Mechanics, in situations like, for example: fluids with complex structures, electronics and photonics involving systems out of equilibrium, nano-technologies, low-dimensional systems, non-linear and ultrafast processes in semiconductors devices, and soft matter. It is shown that the Non Equilibrium Statistical Mechanics can deal, within a certain degree of triumph, with some these situations, namely: 1. nonconventional thermo-hydrodynamics; 2. ultrafast relaxation processes in semiconductors devices; 3. nonequilibrium Bose-Einstein-like condensations and coherent states; 4. low-dimensional semiconductors; 5. thermo-statistics of complex structured systems; 6. nonlinear higher-order thermo-hydrodynamics; and 7. nonlinear transport in semiconductors devices. These areas are of particular interest, at the scientific, technological and at the production line, and therefore of relevance for government and society, successfully analyzed in terms of the formalism of Non Equilibrium Statistical Mechanics.
Science, Technology, Statistical Physics, Non-equilibrium Systems
[01] D. Normile (2007). Science policy, in news of the week. Science, v. 316, p. 186.
[02] W. A. Wulf (2007). Editorial. Science, v. 316, p. 1253.
[03] C. H. B. Cruz (1999). The university, the company and the research that the country needs. Humanidades, v. 45, pp. 15-29.
[04] J. H. Marburger (2006). Science and government. Physics Today, v. 59, n. 6, pp. 38-42.
[05] R. Doyle (2006). By the numbers: not so revolutionary. Scientific American, December issue, p. 18.
[06] D. S. Landers. The unbound Prometheus: technological change and industrial development in Western Europe from 1750 to the present. Cambridge Univ. Press, Cambridge, UK, 1969.
[07] M. L. Good (1996). The globalization of technology. Physics Today, v. 49, n. 8, pp. 23-27.
[08] W. T. Golden. Enabling the future: linking science and technology to societal goals. A Report of the Carnegie Commission, New York, USA, 1992.
[09] C. H. B. Cruz (2005). Science and research. Revista Brasileira de Inovação, v. 4, n. 1, pp. 225-261.
[10] D. N. Zubarev, V. Morozov, G. Röpke. Statistical mechanics of nonequilibrium processes. vols. 1 and 2, Akademie-Wiley VCH, Berlin, Germany, 1996 and 1997 respectively.
[11] R. Zwanzig. Where do we go from here? in: Perspectives in statistical mechanics. North Holland, Amsterdam, The Netherlands, 1981.
[12] R. Luzzi, A. R. Vasconcellos, J. G. Ramos. Predictive statistical mechanics: a nonequilibrium statistical ensemble formalism. Kluwer Academic, Dordrecht, The Netherlands, 2002.
[13] G. Nicolis. Introduction to nonlinear science. Cambridge Univ. Press, Cambridge, UK, 1995.
[14] C. G. Rodrigues, A. R. Vasconcellos, R. Luzzi (2013). Mesoscopic hydro-thermodynamics of phonons in semiconductors: heat transport in III-nitrides. The European Physical Journal B, v. 86, p. 200.
[15] F. Family, T. Vizsek, editors. Dynamic of fractal surfaces. World Scientific, Singapore, 1991.
[16] T. A. Witten (1999). Insights from soft-condensed matter. Review of Modern Physics, v. 71, n. 2, p. 5367.
[17] T. A. Witten, T. A. Pincus. Structured fluids. Oxford Univ. Press, Oxford, UK, 2004.
[18] J. M. Hopkings, W. Sibbet (2000). Big payoffs in a flash. Scientific American, v. 283, p. 54.
[19] J. C. Diels, W. Rudolph. Ultrashort laser phenomena, second updated and extended edition. Academic-Elsevier, Amsterdam, The Netherlands, 2006.
[20] H. Haken. Synergetics. Springer, Berlin, Germany, 1977.
[21] G. Nicolis, I. Prigogine. Self-organization in nonequilibrium systems. Wiley-Interscience, New York, USA, 1977.
[22] G. Nicolis, I. Prigogine. Exploring complexity. Freeman, New York, USA, 1989.
[23] O. Penrose (1979). Foundations of statistical mechanics. Report of Progress Physics, v. 42, n. 12, p. 1937.
[24] J. W. Gibbs. Elementary principles in statistical mechanics. Yale Univ. Press, New Haven, USA, 1902; reprinted by Dover, New York, USA, 1960.
[25] R. P. Feynman. The character of physical laws. MIT Press, Cambridge, USA, 1967.
[26] J. Bronowski. The common sense of science. Harvard Univ. Press, Cambridge, USA, 1978.
[27] N. Oreskes, N. H. Shrader-Frechette, K. Beltz (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, v. 263, pp. 641-646.
[28] R. Kubo (1978). Opening address at the Oji seminar. Progress of Theoretical Physics (Japan), Suppl. 64, p. 1.
[29] M. H. Kalos, P. A. Whitlock. Monte Carlo methods. Wiley-Interscience, New York, USA, 2007.
[30] D. Frenkel, B. Smit. Understanding molecular simulation. Academic, New York, USA, 2002.
[31] J. Langer (1999). Computing in physics: are we taking it too seriously? Or not seriously enough? Physics Today, v. 52, n. 7, pp. 11-13.
[32] B. J. Alder, T. E. Wainwright (1957). Phase transition for a hard sphere system; studies in molecular dynamics. I. General method. The Journal of Chemical Physics, v. 27, p. 1208.
[33] A. Rahman (1964). Correlations in the motion of atoms in liquid argon. Physical Review, v. 136, n. 2A, pp. A405-A411.
[34] R. Car, M. Parrinello (1985). Unified approach for molecular dynamics and density-functional theory. Physical Review Letters, v. 55, p. 2471.
[35] H. Mori, I. Oppenheim, J. Ross. Some topics in quantum statistics, in: Studies in statistical mechanics I. North Holland, Amsterdam, The Netherlands, 1962.
[36] S. V. Peletminskii, A. A. Yatsenko (1968). Journal of Experimental and Theoretical Physics, v. 26, p. 773.
[37] A. I. Akhiezer, S. V. Peletminskii. Methods of statistical physics. Pergamon, Oxford, UK, 1981.
[38] J. G. Kirkwood (1946). The statistical mechanical theory of transport processes I. General theory. The Journal of Chemical Physics, v. 14, p. 180.
[39] M. S. Green (1952). Markoff random processes and the statistical mechanics of time-dependent phenomena. The Journal of Chemical Physics, v. 20, p. 1281.
[40] H. Mori (1965). Transport, collective motion, and Brownian motion. Progress of Theoretical Physics (Japan), v. 33, n. 3, p. 423.
[41] R. Zwanzig. Statistical mechanics of irreversibility, In: Lectures in theoretical physics, v. 3. Wiley-Interscience, New York, USA, 1961.
[42] A. Salam, V. S. Vladimorov, A. A. Logunov (1993). Tribute in memoriam of Nicolai N. Bogoliubov. Theoretical Mathematical Physics, v. 92, p. 817.
[43] N. S. Krylov. Works on foundations in statistical mechanics. Princeton Univ. Press, Princeton, USA, 1979.
[44] R. Luzzi, A. R. Vasconcellos, J. G. Ramos (2000). A nonequilibrium statistical ensemble formalism MaxEnt-NESOM: basic concepts, construction, application, open questions and criticisms. International Journal of Modern Physics B, v. 14, n. 28, p. 3189.
[45] D. N. Zubarev, V. P. Kalashnikov (1971). Theoretical and Mathematical Physics, v. 1, p. 108.
[46] A. R. Vasconcellos, J. G. Ramos, A. Gorenstein, M. U. Kleinke, T. G. S. Cruz, R. Luzzi (2006). Statistical approach to non-fickian diffusion. International Journal of Modern Physics B, v. 20, n. 28, p. 4821.
[47] M. V. Mesquita, A. R. Vasconcellos (1983). Amplification of coherent polar vibrations in biopolymers Fröhlich condensate. Physical Review E, v. 48, n. 5, p. 4049.
[48] A. A. P. Silva, E. A. Meneses, A. R. Vasconcellos, R. Luzzi (2013). Optical spectra and Stokes shift in nanometric quantum wells, Optics and Photonics Journal, v. 3, p. 1.
[49] C. G. Rodrigues, A. R. Vasconcellos, R. Luzzi (2014). Thermal conductivity in higher-order generalized hydrodynamics: characterization of nanowires of silicon and gallium nitride. Physica E, v. 60, p. 50.
[50] A. R. Vasconcellos, M. S. P. Brasil, R. Luzzi, A. A. P. Silva, H. L. Afonso (2009). Ambipolar diffusion and spatial and time-resolved spectroscopy in semiconductor. Journal of Applied Physics, v. 106, p. 043503.
[51] A. R. Vasconcellos, R. Luzzi, C. G. Rodrigues, V. N. Freire (2003). Hot phonon bottleneck in the photoinjected plasma in GaN. Applied Physics Letters, v. 82, p. 2455.
[52] C. G. Rodrigues, A. R. Vasconcellos, R. Luzzi, V. N. Freire (2005). Nonlinear transport properties of doped III-N and GaAs polar semiconductors: a comparison. Journal of Applied Physics, v. 98, p. 043703.
[53] C. G. Rodrigues, F. S. Vannucchi, R. Luzzi (2018). Advanced Quantum Technologies, v. 1, n. 1, p. 201800023.
[54] C. G. Rodrigues, A. R. Vasconcellos, R. Luzzi (2000). A kinetic theory for nonlinear quantum transport. Transport Theory and Statistical Physics, v. 29, p. 733.
[55] H. Spohn (1980). Kinetic equations from Hamiltonian dynamics: Markovian limits. Review of Modern Physics, v. 53, p. 569.
[56] Y. L. Klimontovich. Statistical theory of open systems, v. 1: a unified approach to kinetic description of processes in active systems. Kluwer Academic, Dordrecht, The Netherlands, 1995.
[57] L. N. Tsintsadze, K. Nishikawa, T. Tajima, J. T. Mendonça (1999). Stationary periodic and solitary waves induced by a strong short laser pulse. Physical Review E, v. 60, p. 7435.
[58] D. Snoke (2006). Condensed-matter physics: coherent questions. Nature, v. 443, p. 403.
[59] H. Fröhlich (1975). Evidence for Bose condensation-like excitation of coherent modes in biological systems. Physics Letters A, v. 51, p. 21.
[60] S. J. Gould. Dinosaur in a haystack. Random House, New York, USA, 1995.
[61] S. Hawking. The nature of space and time. Princeton Univ. Press, Princeton, UK, 1996.
[62] M. Born. Experiment and theory in physics. Dover, New York, USA, 1956.
[63] J. T. Cushing. Philosophical concepts in physics. Cambridge Univ. Press., Cambridge, 1998.
[64] G. Sonnino, editor (2016). Special Issue “Recent advances in non-equilibrium statistical mechanics and its application”, Entropy, v. 18.
[65] OECD (2017). Science, technology and industry scoreboard 2017: The digital transformation. OECD Publishing, Paris,
[66] J. J. Yun, A. V. Mohan, X. Zhao, editors (2017). Special Issue: “Society of open innovation: select papers and reports on technology, market and complexity”. Science, Technology and Society, v. 22, n. 3, pp. 379-538.
[67] L. F. Baron, R. Gomez (2016). The associations between technologies and societies. Science, Technology and Society, v. 21, n. 2, pp. 129–148.
[68] M. M. Zolfagharzadeh, A. A. Sadabadi, M. Sanaei, F. L. Toosi, M. Hajari (2017). Science and technology diplomacy: a framework at the national level. Journal of Science and Technology Policy Management, v. 8, n. 2, pp. 98-128.
MA 02210, USA
AIS is an academia-oriented and non-commercial institute aiming at providing users with a way to quickly and easily get the academic and scientific information.
Copyright © 2014 - 2017 American Institute of Science except certain content provided by third parties.